
Draft version July 8, 2014
Preprint typeset using LATEX style emulateapj v. 8/13/10

GENERAL RELATIVISTIC POLARIZED RADIATIVE TRANSFER CODE ASTRORAY.
USER GUIDE

Roman V. Shcherbakov
Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA

Hubble Fellow

Draft version July 8, 2014

ABSTRACT

Version 1.0 of the code is publicly released. The code is provided under the terms of GNU Public
License v. 3.0. No technical support is provided.

1. GENERAL IDEAS

The technique and the application of the code are
described in Shcherbakov & Huang (2011) (later SH11)
and Shcherbakov et al. (2012) (later SPM12), respec-
tively. The code performs radiative transfer on top
of three-dimensional general relativistic magneto hydro-
dynamic (3D GRMHD) simulations such as the ones
described in Penna et al. (2010); Tchekhovskoy et al.
(2011); McKinney et al. (2012); Narayan et al. (2012).
Radiation is not expected to significantly alter the dy-
namical quantities of the so-called radiatively inefficient
accretion flows (RIAFs) (Narayan et al. 1998; Quataert
2001). Therefore, one can perform the numerical simu-
lations without cooling and then perform the radiative
transfer in the post-processing.
The radiative transfer of polarized cyclo-synchrotron

is performed. Version 1.0 only handles thermal dis-
tribution of electrons at the moment, but non-thermal
particles can be readily introduced. The general radia-
tive transfer equation in plain geometry is given by for-
mula (17) in SH11, where emissivities εI,Q,V , absorptiv-
ities αI,Q,V , and rotativities ρQ,V are given by formulas
(21)-(25). Note, that the expression (20) for emissivi-
ties is valid for any particle distribution, while the ex-
pressions (22) and (23) for absorptivities and rotativities
are only valid for thermal particles. Non-thermal rota-
tivities are computed in Huang & Shcherbakov (2011).
The correspondent Mathematica 9 script can be found
at http://astroman.org/Faraday_conversion/
The proper extension of radiative transfer to GR is

described in SH11. We switch from the Stokes vec-
tor S to the vector of photon occupation numbers N
(eq. (55) in SH11). Radiative transfer is conducted
along the geodesic path of massless particles via the
technique called ”ray tracing”. This technique is best
applied, when the emission/absorption/rotation coeffi-
cients depend only on the local dynamical properties of
the medium and not on the local properties of radia-
tion field. It is possible to use the applied technique to
Compton scattering as well, but then we need to com-
pute and retain in computer memory the radiation field
at each point. Ray tracing consists of solving for the pho-
ton geodesic from the picture plane/telescope/observer’s
plane in the direction of the black hole (BH). The
geodesics either go back to infinity or fall onto the BH.
Then the relevant equations on the evolution of Stokes

shcher@gmail.com

occupation numbers are solved from the end points on
the geodesics back to the observer’s plane. The resultant
polarized intensities on the plane constitute an image.
Integrated over the observer’s angle intensities give the
total fluxes (Rybicki & Lightman 1979).

1.1. Extension to large radius
2. COMPILATION AND BASIC USAGE

2.1. Compilation

The code can be successfully compiled in GNU com-
piler ”gcc”, Intel Compiler ”icc”, and (with minor mod-
ifications) in Microsoft Visual Studio (”icl”) The recom-
mended software versions to ensure compilation and fast
execution are: Visual Studio 2010, ”gcc” version 4.6 or
higher, ”icc” version 11.0 or higher.
When submitting a job with QSUB on a supercom-

puter such as Deepthought at UMD or Nautilus at NICS
the environment variable PBS ARRAY ID is read. It
corresponds to the index of a batch job. Remember that
some systems have a low limit on the number of con-
current jobs. The correspondent environment variable
is LSB JOBINDEX on BSUB system. The variable
name should be double-checked on any supercomputer
of interest. Whenever a code is run on a regular com-
puter, the environment variable PBS ARRAY ID needs
to be defined.

3. SETTING UP AND RUNNING THE CODE ON NAUTILUS

3.1. Prerequisites/Tricks

1. If one cannot login through Nautilus, then login
through Kraken. They have a shared file system.

2. Nautilus often does not like it, when one logs
in from a laptop and drops a connection after
1min of inactivity. To avoid that add ”export
TMOUT=86400” in ”.bash profile” file in home di-
rectory.

3. For compilation load intel/12.1.233 module with a
command ”module load intel/12.1.233”. This com-
piler produces the fastest code - about 0.5% faster
than GCC 4.6.3. Make sure no other intel or GCC
compiler (apart from default GCC 4.3.4) is loaded
by executing command ”module list” and scanning
its output. For automatic dealing with modules
add ”module unload intel/11.1.038” and ”module
load intel/12.1.233” lines to .modules file in the
home directory, then relogin to Nautilus.

http://astroman.org/Faraday_conversion/
mailto:shcher@gmail.com


4. Check the size/file count quotas for home direc-
tory. They are typically found in documentation.
Exceeding the disk space of all home directories
brings Nautilus down.

3.2. Directories and Files

1. Create directory with any name (I use name
rt) for radiative transfer code in home directory
(/nics/d/home/USERNAME/ on Nautilus). Cre-
ate directory with any name (I use name analysis)
for analysis in either the home directory or (better)
in a work directory (/lustre/medusa/USERNAME/
on Nautilus). Make sure the variable dir in
win lin Jon.c points at analysis directory.

2. Copy the code w/ all files into ∼/rt/. Copy 5
files with radiative transfer coefficients for thermal
plasma to analysis/ folder.

3. Create a directory analysis/SIMULATION/, where
SIMULATION is a name of a particular GRMHD
simulation of interest, i.e. ”thickdisk7”. Add this
name as a part of astr array in win lin Jon.c file,
add a correspondent spin value into atab array.
One may need to correspondingly increase the sizes
of those array. Make sure the values of rlen,
thlen, and phlen correspond to radial, poloidal,
and toroidal resolutions, respectively. The code
will not complain about a problem, but a corre-
spondent Mathematica 9 script will.

4. Copy dxdxp.dat and TsmapSIMULATION.dat files
into analysis/SIMULATION/ directory. If one
doesn’t have the files, then one needs to generate
them (see below).

5. Make sure that ALL fieldlineXXXX.bin
files of interest exist in (or linked to)
adir/SIMULATION/fieldstr directory. Those
variables are defined in win lin Jon.c file. One
may need to change adir and fieldstr variables to
point to the correct location.

6. If one needs to compile with ”gcc” and not
with ”icc”, then copy ∼/rt/Makefile gcc into
∼/rt/Makefile.

7. Compile the code with ”make -B” command from
∼/rt/ directory. It should take under 30 seconds.

8. Make sure that every directory in the tree and every
file has a group read permission.

3.3. Job submission and execution

1. Each supercomputer has its job submission system
(BSUB/QSUB/other) and its own features/bugs.
Always submit jobs through the submission system
and not directly. One cannot directly copy the sub-
mission files from one system to another. Always
RTFM first. Erroneous submission may bring su-
percomputer down.

2. The examples of QSUB scripts for Nautilus are in
linux Nautilus in GIT repository. The examples of
BSUB scripts are in linux Odyssey in GIT reposi-
tory.

3. Set nthreads in win lin Jon.c to the maximum
number of OpenMP threads the system supports
/or/ on shared system machines set it to a
smaller number, for which the code runs efficiently.
nthreads = 16 is typically a safe bet.

4. Make sure the number of CPUs in the batch job file
is equal to nthreads as ncpus = 16(= nthreads).

5. Make sure there is enough memory in the system.
The code needs about 2 ∗ fdiff ∗ (fieldlinesize) +
4 GB of shared RAM, where the size of field-
lineXXXX.bin file is used.

6. Translate the memory requirement into a line in
the job submission file.

7. For each change in ”c” or ”cpp” files run ”make
-B”. Always check that ∼/rt/transfer quad ex-
ecutable has a later modification time than any
other code file.

8. For QSUB system take care of the batch variable
by submitting as ”qsub -t H G SCRIPTNAME”,
where H is the first index for PBS ARRAY ID
and G is the last index. For provided Nautilus
scripts the submission lines are the last (com-
mented) lines of the scripts.

9. For a quick test one might submit quall2.csh as
”qsub -t 30-30 quall2.csh”. A quick test typically
starts running immediately after submission and

10. Make sure to not exceed the suggested system I/O
bandwidth. Limit the number of concurrent jobs
with heavy I/O (especially in m sear mode). Too
much I/O will slow down the supercomputer and
may bring it down.

11. For some time after submission keep checking the
job status with, e.g. ”showq -n”. If the job starts
running or disappears, then check the outputs.

12. First outputs to check are the ”error” and ”out-
put” files in ∼/rt/ directory. Communication er-
rors typically can be ignored, segmentation faults
cannot. If one didn’t modify the code, then a seg-
mentation fault means that some input files are
missing/have wrong names/are in wrong places.
Other type of mistakes are typically caught on a
debug stage.

13. If the code actually works (the ”error” and ”out-
put” files have zero sizes for at least a couple
of minutes), then check the output in analysis/
folder. m quick mode generates first output within
a minute, while m sear mode generates first output
after 1hr. Read the first output files to check that
they look ok and make sure the code doesn’t need
to be restarted. That saves tons of one’s time and
computational time.



3.4. Other

1. Define rgrav in transfer quad.cpp and the pro-
portionality coefficient for the final flux in inten-
sity.cpp to correspond to the physical problem at
hand. Make sure rgrav is self-consistently used as
either M or 2M . At present rgrav = 2GM/c2.

2. Copy one of the late-time fieldlineXXXX.bin
files on a laptop/desktop. Copy gdump.bin file
from adir + SIMULATION + fieldstr to lap-
top/desktop.

3. Run a Mathematica 9 script on those files to cre-
ate dxdxp.dat file. Run a series of Mathematica 9
tests to see that we understand the structure of
fieldlineXXXX.bin file and that everything is con-
sistent.

4. Run radiative transfer code in m ts mode by first
creating a correspondent batch job. The output is
a file of average temperature/density profiles anal-
ysis/SIMULATION/TsmapSIMULATIONx.dat.

5. Rename that file into analy-
sis/SIMULATION/TsmapSIMULATION.dat
file. This extra step is implemented to avoid
accidentally overwriting the file of averaged
profiles.

6. Figure out the frequencies, for which we want to
compute the radiative transfer. Figure out the
fluxes at these frequencies. Enter everything into
sftab variable in transfer quad.cpp. While a set of
frequencies is obligatory, the fluxes are not obliga-
tory unless a model-fitting routine is invoked.

7. Come up with a fiducial set of parameters rhonor,
heat, th and run radiative transfer code inm quick
mode. One needs to set fdiff = 0 and define
thlimit and isBcut variables. Also set fmin,
fmax, and ind to some values. Recompile the code
each time the parameters are changed.

8. Run Mathematica 9 script to plot the lightcurve
and perform any other analysis one needs.

9. Try to manually change three parameters for a
quick computation in order to produce a spectrum,
which resembles the observed spectrum.

10. Define the χ2 computation and a set of residuals.
Run the code in m sear mode and find a local min-
imum. Recompile the code after any parameters
were changed. A simplified version of m sear is
implemented at present: it might not find a global
minimum, especially if the polarized quantities are
fitted for. A full version would include running
m sear for a set of fixed inclination angles and
searching in space of rhonor and heat only. It
is recommended that ind = 21 is set for this step.

11. Run the code in m imag mode and create image
files. Run the correspondent Mathematica 9 script
to visualize the images.

12. Run the code in m quick for maximum ind, run
correspondent Mathematica 9 script and enjoy the
full variable lightcurve.

13. Run the code inm imag for maximum ind, run cor-
respondent Mathematica 9 script to create all im-
ages. Use, e.g. JPGvideo program to make movies.
Upload movies to Youtube.

4. INPUTS

The code has several inputs and several modes of op-
eration.

4.1. GRMHD simulation snapshots

The files fieldlineXXXX.bin are the simulation snap-
shots. They contain the full 3D dynamical quantities:
arbitrarily normalized density ρ, internal energy density
u, 4-velocity uν , 3-vector of lab-frame magnetic field Bi

(see Penna et al. 2010), and two more quantities, which
we do not need. All quantities are 4-byte real numbers
The simulations are performed on a distorted spherical
grid, modified Kerr-Schild (MKS) coordinates. The ef-
fective dimensions are rlen, thlen, and phlen in ra-
dial, poloidal, and toroidal directions, respectively. field-
lineXXXX.bin files contain the preamble of the length
which changed over the years. Thus, start reading the
file from the position

p = filesize− rlen ∗ thlen ∗ phlen ∗ 11 ∗ 4. (1)

The velocity of matter approaches the speed of light
near the event horizon. Therefore, as the photons prop-
agate within the flow, the flow itself has enough time to
change. The information about the flow at that later
time is stored in a fieldlineYYYY.bin file with a dif-
ferent Y Y Y Y > XXXX number. The emissivity etc.
at that later time is determined by quantities in field-
lineYYYY.bin. The code allows to read several field-
lineXXXX.bin files from the storage and perform self-
consistent radiative transfer calculations, where the nu-
merical simulation effectively evolves as the light propa-
gates through the flow.

4.2. Coordinates and transformations

Since the simulation grid is not spherical, the distor-
tions need to be quantified. First, we should know the
coordinates of grid points. Second, we need to know the
Jacobian matrix of transformation between the distorted
coordinates and the unmodified Kerr-Schild (KS) coordi-
nates. The metric tensor in KS system is analytic and is
computed directly within the code. Both coordinates and
Jacobian matrices are parts of gdump.bin file. However,
I don’t want to read that file (or even a part of it) within
the code, since the format of that file may also change
with time. Instead, I read 1/phlen’s part of gdump.bin
in Mathematica 9 , then extract the coordinates and the
Jacobian matrix at each point. Both are written into
dxdxp.dat file, which has a small size. The Mathemat-
ica 9 code to produce dxdxp.dat from gdump.bin is the
auxiliary part of the full code.
The transformation of coordinates is the correspon-

dence of the consecutive number of a grid cell (nr, nθ, nφ)
to ”real” MKS coordinates (r, θ, φ). The transformation
of nφ to φ is strictly linear. The transformation of nr to



r is close to exponential. Coordinate θ in the function
of both nr and nθ in the latest versions of Jon’s HARM
code. That latter dependence is highly sophisticated and
hard to invert, which makes us create dxdxp.dat binary
file as opposed to analytic computations of coordinates
and the transformation matrices.

4.3. Average density and temperature profiles

The numerical simulations output the internal energy
density at each point. However, those are the elec-
trons, which radiate. The electron temperature Te is
expected to be much lower than the proton temperature
Tp close to the BH (Narayan & Yi 1995). The Coulomb
collisions or the plasma processes might not be strong
enough to equilibrate the temperatures, and the two-
temperature flow arises. Electrons can be cooler, be-
cause they can cool (Drappeau et al. 2012), because their
heat capacity is much higher at relativistic temperatures
(Shcherbakov & Baganoff 2010), because viscosity is ex-
pected to mainly heat the protons (Narayan & Yi 1995;
Sharma et al. 2007).
It is not really possible to compute the temperature

of electrons from the first principles, or prove that the
distribution is thermal. Some researchers set the elec-
tron temperature to be a constant fraction of proton
temperature Tp/Te = const (Mościbrodzka et al. 2009;
Dexter et al. 2010). However, I employ a more sophisti-
cated technique. I follow Sharma et al. (2007) and com-
pute Te starting from the outer simulation boundary
some 105rg away from the center. Such computation in-
cludes the Coulomb collisions, relativistic heat capacity
of electrons, redistribution of viscous energy dissipation
between species Qe/Qi = C(Te/Ti)

0.5, where C is a con-
stant. The code computes correspondence of Te on u in
the equatorial plane over the averaged profiles of density
and temperature. Then it draws Te from that correspon-
dence to u at any point of the simulation (see section 4.2
of SPM12). Those averaged radial profiles of density and
temperature are created by m ts routine (see below) and
stored in TsmapNAME.dat text file, where NAME is the
simulation name.

4.4. Cyclo-synchrotron emissivities and rotativities

A crucial part of GR polarized radiative transfer is the
correct absorptivities/emissivities/rotativities. Those
are computed by a separateMathematica 9 script. Those
coefficients are typically function of three parameters:
electron temperature θe = kbTe/(mec

2) (or the whole
particle distribution), angle between the magnetic field
line and the direction of k vector θkB , and the ratio of
cyclotron frequency to observed frequency νB/ν. The as-
sumed momentum distribution of particles is isotropic.
However, the number of parameters can be reduced
in certain approximations down to two for emissiv-
ity/absorptivity, and down to one for rotativities (Fara-
day rotation and conversion) (see SPM12). The rele-
vant text files are two-parametric lookupjIy.dat file for
total emissivity, lookupjQy.dat file for linearly polarized
emissivity, lookupjVy.dat for circularly polarized emissiv-
ity, lookupjQa.dat for Faraday conversion coefficient, and
lookupjVa.dat for Faraday rotation coefficient. It is re-
dundant to have two dimensions for rotativities, but this
is done for the sake of uniformity.

5. MODES OF OPERATION

5.1. Usage

The usage is transfer quad A B C D with defined
PBS ARRAY ID. The parameter A chooses a spin
of the flow or chooses one of the predefined models.
A − 1 is the index in atab, astr, and ncuttab arrays
defined in win lin NAME.c files. The fourth parame-
ter D chooses the operation mode (the mode is some-
times chosen in transfed quad routine itself for debug-
ging purposes). Parameter B means the number of sep-
arate points of time, over which the computation of
image/intensity etc. are performed in all modes ex-
cept m surf. It coincides with the number of simula-
tion snapshots for fdiff = 0. In mode m surf the pa-
rameter B switched between surfing different pairs of
parameters: B = 1 => tth and rhonor, B = 2 =>
rhonor and heat, B = 3 => heat and tth. Parameter
C means different things for different D.
The radiative transfer code has seven modes of op-

eration at present. They serve the tasks of computing
the auxiliary quantities, computing the spectrum for a
single set of flow parameters, exploring the full param-
eters space, searching for a local minimum of χ2/dof
in the parameter space, thoroughly surfing the region of
parameter space, creating a flow image, performing con-
vergence studies. The flow parameters are the spin a∗,
the inclination angle θ, the accretion rate Ṁ , the heating
constant C or the ratio of temperatures Ti/Te at certain
radius. For each set of parameters we compute the spec-
trum/image at several times correspondent to times of
simulation snapshots with numbers from fmin to fmax
with a step sep. For example, fmin = 6950, fmax =
9950, and sep = 150 were used in Shcherbakov et al.
(2012) to compute the spectrum at 21 points of time.
Parameter fdiff determines in which range of times ∆t
around the simulation snapshot times t0 the simulation
is taken to evolve as the rays propagate. For example,
fdiff = 60 means that snapshots fieldlineXXXX.bin with
numbers from XXXX0 − fdiff to XXXX0 + fdiff
are employed to compute the spectrum at a time corre-
spondent to XXXX0. The value fdiff = 0 corresponds
to ”fast light propagation”, i.e. the simulation is not
evolved as the light propagates along geodesics. In such
case at each time the spectrum/image is simulated for a
single simulation snapshot. Large values of fdiff may
not work because of memory limitations. Some time
ago all simulated spectra used to be computed based on
single snapshots/averaged model. The routines for such
computations were called s name. Now the routines are
called m name to indicate the computations are always
performed on multiple snapshots/at multiple points of
time. The range of frequencies for the radiative transfer
can be chosen in any routine with variables kmin and
kmax.
The ”main” function is contained in transfer quad file,

whose primary goal is to read the command line param-
eters and decide on the mode of operation. That file also
defines global variables, and a couple of core functions,
which are to be discussed below.

5.2. m space

This routine allows for a given spin sp ∼ a∗ and in-
clination angle th = θ to surf the parameter space of



heating constant heat = C. For each value of heat
we search for the value of density normalization rhonor

(which is proportional to the accretion rate Ṁ), which
provides the best χ2 fit to the data. Then we explore
the values of rhonor near that best value. The values
of heating constant heat roll from 0.75 down to 0.15.
The routine is run for a range of inclination angles th.
Such technique allows for thorough exploration of the
entire parameter space to make sure no local minimum
is missed. Looking at rhonor values near the minimum
allows to immediately estimate the confidence interval,
e.g., based on ∆χ2 technique. Search for the best combi-
nation of parameters and the estimate of the confidence
interval are done by a separate Mathematica 9 scripts.

5.3. m quick

A simple computation of a spectrum for a single set
of parameters sp, th, rhonor, heat, fdiff within the
range from fmin to fmax. The result is written into
quickaSTRING.dat file. The routine is convenient to use
for debugging the code.

5.4. m conv

A range of convergence tests/tests on sensitivity to
auxiliary flow parameters is conducted by this rou-
tine. The descriptions and ideas behind such tests
can be found in the Table 3 and the Appendix of
Shcherbakov et al. (2012). The sample spectrum is com-
puted first similar to m quick routine. Then one param-
eter is changed and the spectrum is recomputed. Then
the change in reduced chi-squared, χ2

H/dof defined by
formula (A1), is computed the quantify the changes in
the spectrum. In the present version tests (1) and (2)
explores the number of geodesics given by snxy2 to com-
pute the spectrum. Tests (3) and (4) check how far from
the BH the radiative transfer should start on geodesics,
which go through the horizon. Tests (5) and (6) test
the size of the emitting region. Tests (7) to (9) explore
the changes in the slopes of extensions of quantities to
large radius (changes in magnetic field slope might not
be consistently implemented at present). Tests (10) and
(11) explore the number of spectra computed over a long
period of time to represent the true mean spectrum over
that period of time. Tests (12) to (14) explore for how
long one needs to have the simulation evolve simultane-
ously with the propagation of light rays. Tests (15) to
(38) explore the sensitivity to small changes in main pa-
rameters heat, rhonor, and th. These latter tests are
useful to figure out the test steps in heat, rhonor, and
th to use in minimization routines.

5.5. m surf

Explores the rectangular grid in any two out of three
parameters heat, rhonor, and th. Computation is use-
ful to show the contours of ∆χ2 and illustrate the confi-
dence intervals.

5.6. m imag

This routine is very similar to m quick. However, in-
stead of computing the spectrum, we compute the image
(2D table) of Stokes parameters in the picture plane. A
separate Mathematica 9 routine is used to draw the ac-
tual images. The same routine can technically compute

the image and the spectrum. However, the resolution is
higher for an image, which makes the calculation slower.
Thus, I use m quick to quickly compute the spectra over
many frequencies and m imag to compute the images
over a few frequencies.

5.7. m sear

This routine searches for a local minimum with the
help of a steepest descent method. First, I set up some
initial conditions, which does not have to be provide a
fit. Then I explore the initial conditions, where one of the
parameters is changed, i.e., heat changed to heat(1 +
dheat) etc. The steepest descent methods searches for
a local minimum until the algorithm converges (as given
by ddh, ddr and dth variables), or until 20 iterations
are performed. The algorithm is known to be stuck in
a limit cycle at low heat values, thus the limit on the
number of iterations is important.

5.8. m ts

This routine reads multiple simulation snapshots and
finds the average of density and internal energy den-
sity around the equatorial plane in θ, over all φ, for
each radius r. The resultant profiles are sorted to be
homogeneous, which is needed to define a single-valued
Te(u) function. The sorted radial profile is written into
TsmapxSTRING.dat file.

6. CORE ROUTINES

In this section we describe the routines and functions,
which define and perform the computations. All equa-
tions are derived in separate Mathematica 9 scripts,
which are to be shared as well.

6.1. init

6.2. intensity

Performs the computation of intensity along a pre-
computed set of geodesics.

6.3. imaging

This routine is very similar to intensity. Performs the
computation of intensity along a pre-computed set of
geodesics.

6.4. evalpointzero

Main routine

6.5. solvetrans

Frond-end routine for solving radiative transfer equa-
tions

6.6. transnew

Radiative transfer equations in polarized polar coordi-
nates

6.7. geoint

Frond-end routine for solving for the geodesics

6.8. geodes

Equations, which define the geodesic line as well as two
parallel-propagated vectors.



6.9. emis

Look-up of emissivity/Faraday rotation & conversion
coefficients on 2D grid.

6.10. Function solte in transfer quad

The evolution equations on proton and electron tem-
peratures. The equations are solved within init function.

7. CODE VARIABLES

8. SUPPORTING MATHEMATICA 8 SCRIPTS

A lot of scripts are to be grouped into a single struc-
tured file check GRMHD code.nb in math directory on
GIT. It consists of variety of scripts, which compute aux-
iliary quantities, derive some parts of ASTRORAY code
to be directly copied into C++, and check GRMHD code.
Please, run ”Cell-¿Delete all output” in Mathematica 9
before committing the file to GIT. The data processing
and QPO computations are stored in separate Mathe-
matica 9 scripts to be shared later.

8.1. check GRMHD code.nb

8.1.1. Emis functions

The script ”Computing emissivities/rotativities” does
what its title says. The precise relativistic thermal elec-
tron distribution is used in all computations. It is easy
to explicitly change the distribution to compute emissiv-
ities. However, if a new distribution is non-thermal, then
the absorptivities need to be computed separately, stored
as another set of tables and read by the code.

The Faraday rotation and conversion for thermal dis-
tribution is computed in my paper (Shcherbakov 2008).
It is somewhat harder to compute Faraday rotation and
conversion for non-thermal particle distribution. One
needs to follow my other paper Huang & Shcherbakov
(2011). The code from that paper is available online.
A perfect future particle distribution is the relativistic

Lorentzian distribution (Shcherbakov 2009)

f(p) ∝

(

1 +

√

1 + p2 − 1

κT

)

−κ+1

. (2)

In the limit κ− > ∞ the distribution becomes the ther-
mal distribution with temperature T = kBTe/(mec

2).
For small κ the distribution is the power-law with a flex-
ible amount of low-energy particles, controlled by the
parameter T . Thus, a single distribution can be used
everywhere! One does not have to artificially merge the
thermal and non-thermal distributions and increase the
number of free parameters.

8.1.2. Evalpointzero functions

A particularly useful script is ”Checking
gdump/fieldline, making dxdxp -¿ for Jon’s jet simula-
tions with QPOs (i.e. thickdisk7)”. This script reads
gdump.bin and a single fieldlineXXXX.bin files from a
specified place on disk. The script performs a number
of tests to ensure the format of each file is properly
decoded and that the encoded data are correctly under-
stood. Then the script computes dxdxp.dat file, which is
required for the ASTRORAY to work.
The script in ”Limiting the polar region” checks how

bad the polar region looks: I make various ContourPlots.

REFERENCES

????
08. 1
Dexter, J., Agol, E., Fragile, P. C., & McKinney, J. C. 2010, ApJ,

717, 1092
Drappeau, S., Dibi, S., Dexter, J., Markoff, S., & Fragile, P. C.

2012, ArXiv e-prints
Huang, L., & Shcherbakov, R. V. 2011, MNRAS, 416, 2574
McKinney, J. C., Tchekhovskoy, A., & Blandford, R. D. 2012,

MNRAS, 423, 3083
Mościbrodzka, M., Gammie, C. F., Dolence, J. C., Shiokawa, H.,

& Leung, P. K. 2009, ApJ, 706, 497
Narayan, R., Mahadevan, R., & Quataert, E. 1998, in Theory of

Black Hole Accretion Disks, ed. M. A. Abramowicz,
G. Bjornsson, & J. E. Pringle, 148

Narayan, R., Sadowski, A., Penna, R. F., & Kulkarni, A. K. 2012,
ArXiv e-prints

Narayan, R., & Yi, I. 1995, ApJ, 452, 710

Penna, R. F., McKinney, J. C., Narayan, R., Tchekhovskoy, A.,
Shafee, R., & McClintock, J. E. 2010, MNRAS, 408, 752

Quataert, E. 2001, in Astronomical Society of the Pacific
Conference Series, Vol. 224, Probing the Physics of Active
Galactic Nuclei, ed. B. M. Peterson, R. W. Pogge, & R. S.
Polidan, 71

Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in
Astrophysics (New York: Wiley)

Sharma, P., Quataert, E., Hammett, G. W., & Stone, J. M. 2007,
ApJ, 667, 714

Shcherbakov, R. V. 2008, ApJ, 688, 695
—. 2009, Physics of Plasmas, 16, 032104
Shcherbakov, R. V., & Baganoff, F. K. 2010, ApJ, 716, 504
Shcherbakov, R. V., & Huang, L. 2011, MNRAS, 410, 1052
Shcherbakov, R. V., Penna, R. F., & McKinney, J. C. 2012, ApJ,

755, 133

Tchekhovskoy, A., Narayan, R., & McKinney, J. C. 2011,
MNRAS, 418, L79


