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ABSTRACT
We present numerical relativity results of tidal disruptions of white dwarfs from ultra-close encounters with a

spinning, intermediate mass black hole. These encounters require a full general relativistic treatment of gravity.
We show that the disruption process and prompt accretion of the debris strongly depend on the magnitude and
orientation of the black hole spin. However, the late-time accretion onto the black hole follows the same
decay,Ṁ ∝ t−5/3, estimated from Newtonian gravity disruption studies. We compute the spectrum of the disk
formed from the fallback material using a slim disk model. The disk spectrum peaks in the soft X-rays and
sustains Eddington luminosity for 1− 3 yrs after the disruption. For arbitrary black hole spin orientations, the
disrupted material is scattered away from the orbital planeby relativistic frame dragging, which often leads
to obscuration of the inner fallback disk by the outflowing debris. The disruption events also yield bursts of
gravitational radiation with characteristic frequenciesof ∼ 3.2 Hz and strain amplitudes of∼ 10−18 for galactic
intermediate mass black holes. The optimistic rate of considered ultra-close disruptions is consistent with no
sources found in ROSAT all-sky survey. The future missions like Wide-Field X-ray Telescope (WFXT) could
observe dozens of events.
Subject headings:accretion – black hole physics – gravitational waves – hydrodynamics – relativity – radiation

mechanisms: general – X-rays: bursts

1. INTRODUCTION

Tidal disruptions of stars by black holes (BHs) are fasci-
nating and violent cosmic events, releasing copious amounts
of energy in electromagnetic radiation and, in some cases,
also accompanied by potentially detectable gravitationalwave
emission. The scattered debris from a stellar disruption will
yield different radiation patterns depending on the orienta-
tion of the orbit. This variety of radiation patterns will
provide clues about both the BH and the internal struc-
ture of the disrupted star. As the debris from a tidal
disruption showers back into the BH to form an accre-
tion disk, for instance, it will radiate close to or above
the Eddington luminosity for some duration, with the spec-
trum peaking at UV/X-ray frequencies depending on the BH
mass (Rees 1988; Evans & Kochanek 1989; Cannizzo et al.
1990; Bogdanovíc et al. 2004; Strubbe & Quataert 2009).
In addition, the unbound debris will quickly scatter over
a large volume, and may be illuminated by the accre-
tion disk, leading to an optical irradiation spectrum domi-
nated by lines (Bogdanović et al. 2004; Sesana et al. 2008;
Strubbe & Quataert 2009; Clausen & Eracleous 2011).

When a main sequence star is disrupted, the super-
Eddington outflow is by itself hot enough to be a sig-
nificant source of optical emission resembling supernova
radiation (Kasen & Ramirez-Ruiz 2009; Strubbe & Quataert
2009). In these circumstances, instead of outflowing de-
bris, a steady optically thick envelope may reprocess the in-
ner disk radiation (Loeb & Ulmer 1997; Ulmer et al. 1998).
As a consequence, neither the inner disk nor the irradiated
debris emission is visible. Another tidal disruption effect
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arises from the tidal compression perpendicular to the orbital
plane. The compression leads to the formation of a strong
shock that triggers a powerful short outburst (Kobayashi etal.
2004; Guillochon et al. 2009; Rosswog et al. 2009). In some
instances, e.g. ultra-close disruptions, the tidal compression
could be strong enough to produce a thermonuclear ignition
of the star. In such cases, the detonation of the star would
be observed as an under-luminous supernova (Rosswog et al.
2009).

The variety of proposed radiative signatures often dis-
agree with each other, calling for precise dynamical model-
ing of tidal disruptions. Early hydrodynamic simulations by
Evans & Kochanek (1989) confirmed a flat distribution of de-
bris mass over its energy range, yielding the predictedt−5/3

law of fallback accretion rate (Rees 1988). Other numeri-
cal investigations addressed the tidal compression and related
shock formation; some of these studies used smoothed parti-
cle hydrodynamics (SPH) techniques (Kobayashi et al. 2004;
Rosswog et al. 2009) and others hydrodynamic grid-based
codes (Guillochon et al. 2009). The studies by Rosswog et al.
(2009) included nuclear reactions with simplified networks.
On the other hand, Bogdanović et al. (2004) looked at the
formation of spherical envelopes Loeb & Ulmer (1997) us-
ing SPH simulations, but the study did not find any con-
clusive evidence of a spherical structure. At present tidal
disruption simulations that capture all the relevant physics
are quite challenging. The simulations require handling,
in addition to hydrodynamics, effects from general relativ-
ity, nuclear reactions, and magnetic fields. Thus, many im-
portant questions are still left unanswered. In particular,
there are very few simulations that account for general rela-
tivistic effects (Laguna et al. 1993a,b; Kobayashi et al. 2004;
Bogdanovíc et al. 2004). The inclusion of magnetic fields
may lead to jet formation.

Very likely, the BHs involved in a tidal disruption will have
spins misaligned with the orbital angular momentum of the
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incoming star. Thus the disk formed from the tidal debris
will have angular momentum that is also misaligned with the
BH spin direction (Rees 1988). For thin disks, the Bardeen-
Petterson effect will align the BH spin with the angular mo-
mentum of the inner region of the disk (Bardeen & Petterson
1975), but for the thick disks expected from tidal disruptions,
the alignment may not happen (Papaloizou & Pringle 1983;
Fragile et al. 2007; Stone & Loeb 2011). This misalignment
could have important consequences on the emission channels
from the disruption, e.g. jet formation. The spin of the BH
will also produce distinct effects in an ultra-close encounter,
when the pericentric radiusRp is comparable to the gravita-
tional radiusRg = GMbh/c2 of the BH. In this strong grav-
ity regime, the details of the disruption will depend not only
on the stellar radius, stellar equation of state, and orbital en-
ergy, but also on the magnitude and orientation of the spin
of the BH. In particular, the properties of the accretion will
depend on the BH spin since its magnitude determines the
location of the innermost stable circular orbit (ISCO) radius
rISCO, ranging fromrISCO = 9Rg for a counter-rotating maxi-
mally spinning BH torISCO = 1Rg for a co-rotating maximally
spinning BH. The value of spin determines whether the star
following the same orbit gets disrupted (Kesden 2011). Fur-
thermore, a misaligned rotating BH will drag around nearby
debris (Bardeen et al. 1972; Shapiro & Teukolsky 1986), and
will effectively push this material away from the orbital dis-
ruption plane. The net effect will be the formation of a shell-
like disruption debris engulfing the BH, as opposed to the tra-
ditional S-shape debris observed in Newtonian gravity simu-
lations (Evans & Kochanek 1989).

The present work aims at exploring the exciting regime of
ultra-close encounters (i.e.Rp ∼ few Rg) of a white dwarf
(WD) with an intermediate mass black hole (IMBH). Our
main goal is to investigate observational signatures due to
strong gravity effects that may shed light on the presence
of IMBHs. We consider a carbon-oxygen WD with mass
Mwd = 1M⊙ and radius (Nauenberg 1972)

Rwd = 1.56R⊕

(

Mwd

Mch

)−1/3
[

1−
(

Mwd

Mch

)4/3
]3/4

= 0.86R⊕ (1)

with Mch = 1.44M⊙ the Chandrasekhar mass andR⊕ = 6,960
km the Earth mean radius. We fix the mass of the IMBH to
Mbh = 103M⊙. With these choices,Rwd ≃ 4Rg ≃ 6,000km.
Therefore, the WD and IMBH can be numerically modeled
with comparable grid resolutions. The other important scale
in the problem is the tidal disruption radiusRt . For our setup
(Rees 1988),

Rt

Rg
≃ 40

(

Rwd

0.86R⊕

)(

Mwd

1M⊙

)−1/3( Mbh

103M⊙

)−2/3

, (2)

gave us ample room to carry out deep penetration encounters.
Currently, there is a large body of evidence for the existence

of both solar mass as well as supermassive BHs with masses
in the range of 105 – 108M⊙. IMBHs are, however, the miss-
ing link between stellar mass and supermassive BHs. Today,
only tentative evidence exists (Irwin et al. 2010; Farrell et al.
2009; Davis et al. 2011). On the other hand, WDs are thought
to be abundant in spiral galaxies (Evans et al. 1987; Reid
2005) and globular clusters (Gerssen et al. 2002). Thus the
identification of distinct signals in both gravitational waves

(GWs) and the electromagnetic spectrum (Gould 2011) from
a disruption event could potentially guide observations that
provide evidence for the existence of IMBH as well as in-
sights into the structure of the WD involved.

Our study uses the full machinery of numerical relativity
to solve the Einstein equations of general relativity and hy-
drodynamics. We do not include nuclear reactions. For the
ultra-close encounters of our interest, withRp ∼ few Rg, a
general relativistic description of gravity is needed. How-
ever, given the mass ratioMwd/Mbh ≃ 10−3 of the bodies in-
volved and encounters not driven by GW emission, one does
not need to account for dynamical general relativistic gravity.
The present study could have been carried out by doing hy-
drodynamics on the fixed space-time background provided by
the IMBH. However, this would have implied developing a
general relativistic hydro code on a fixed background, a code
similar to the SPH code developed by one of us to investigate
the tidal disruption of main sequence stars by supermassive
BHs (Laguna et al. 1993a,b). We decided instead to take ad-
vantage of our numerical relativity code MAYA . The code has
demonstrated excellent performance in handling fluid flows in
the vicinity of BHs in our studies of binary BH mergers in as-
trophysical environments (Bode et al. 2008; Bode et al. 2009;
Bode et al. 2011). The other advantage of using the MAYA
code is the ability to obtain the GW signal directly from the
simulation, without having to take recourse to the possiblyin-
accurate quadrupole formula or the application of post New-
tonian (PN) approximations to space-times containing a spin-
ning BH.

The paper is organized as follows. In § 2, we describe how
self-consistent general relativistic initial data is constructed.
Results from the dynamics of the disruption events are dis-
cussed in § 3. We estimate electromagnetic transient radiation
in § 4 using a slim disk model to compute the spectrum during
the fallback phase. We find that the sources shine at Edding-
ton luminosity∼ 1041erg s−1 for about 1−3 yrs, and then fade
approximately as∝ t−5/3. We also find that there is a 50/50
chance that the inner disk will be obscured by outflowing de-
bris for a fully misaligned BH spin. In § 5, we calculate the
gravitational wave signal produced during the encounters.In
§ 6 we estimate the event rates and discuss the observational
prospects. We discuss the progress and the limitations of our
study in § 7.

2. INITIAL DATA AND CODE TESTS

When using a fully general relativistic code, such as our
MAYA code, that is based on a 3+1 formulation of the Einstein
equations, the initial data for the dynamical space-time are
comprised of the spatial metricγi j and the extrinsic curvature
Ki j of the initial space-time hypersurface. All tensor indices
are spatial indices and, in this section only, we use units for
whichG= c= 1. The metricγi j characterizes the gravitational
potentials of the IMBH and WD, and the tensorKi j provides
the “velocity” of the metric, or the embedding of the space-
like hypersurface, in the space-time.4

Althoughγi j andKi j are dominated by the IMBH, it is cru-
cial to account for the contributions from the WD in order to
correctly include the self-gravity of the WD. The components
of γi j andKi j cannot all be freely specifiable. They need to

4 For a review on numerical relativity, we recommend the textbooks by
Alcubierre (2008) and Baumgarte & Shapiro (2010)
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satisfy the following elliptic equations

8∆φ+φ−5Āi j Ā
i j = −16πφ−3ρ̄∗, (3)

∂ j Ā
i j = 8π J̄i , (4)

where

γi j =φ4δi j (5)

K i j = Āi jφ−10 (6)

ρ∗ = ρ̄∗φ
−8 (7)

Ji = J̄iφ−10 . (8)

Above,φ is a conformal factor,δi j = diag(1,1,1) the flat spa-
tial metric and∆ its associated Laplace operator. In writing
Eqs. (3) and (4), we have made the customary assumption
that the initial physical metricγi j is conformally flat andKi j
is trace-free. Eqs. (3) and (4) are, respectively, the conformal
versions of the so-called Hamiltonian and momentum con-
straints of general relativity (York 1979). The sourcesρ∗ and
Ji are, respectively, the total energy and momentum densities.

Our approach to solve the Hamiltonian and momentum con-
straints is to specify the “free” data in Eqs. (3) and (4) from
the solutions to an isolated, spinning BH, and a boosted WD
(Löffler et al. 2006).

Let us consider first the solution for a boosted WD. The
sourcesρ̄∗ and J̄i in Eqs. (3) and (4) are obtained from
the stress-energy tensor for a perfect fluid (see chapter 5 in
Baumgarte & Shapiro 2010). They read

ρ̄∗ = ρ

(

1+ ε+
P
ρ

)

W2 − P, (9)

J̄i = ρ

(

1+ ε+
P
ρ

)

W2vi , (10)

where W = (1 − γi j viv j)−1/2 is the Lorentz factor andvi

the boost velocity of the WD. In (9) and (10),ρ is the
rest-mass density,P the pressure, andε the specific in-
ternal energy density. The values for those quantities are
obtained from Tolman-Oppenheimer-Volkoff (TOV) solu-
tions (Oppenheimer & Volkoff 1939; Tolman 1939) with a
polytropic equation of stateP = K ρΓ. We useΓ = 5/3 appro-
priate for a non-degenerate gas, which is sufficient to capture
the dynamics during the inspiral and disruption phases. Dur-
ing the evolution, we switch to a gamma-law equation of state
P = ρε (Γ− 1). We denote the solutions to Eqs. (3) and (4) in
the absence of the BH byφwd andĀwd

i j .
Now we consider the solution to the constraints for a spin-

ning BH. In the absence of the WD,̄ρ∗ = 0 andJ̄i = 0. In
this case, the momentum constraint (4) can be solved analyti-
cally (Bowen & York 1980). The solution reads

Ābh
i j =

3
r3

(

ǫkil S
l lkl j + ǫk jlS

l lkl i
)

(11)

with l i = xi/r andǫi jk the three-dimensional Levi-Civita sym-
bol. Above,Si is the spin vector of the BH.

With the solutions̄Awd
i j andĀbh

i j at hand, it is clear that the
linear superposition̄Ai j = Ābh

i j + Āwd
i j is the solution to the mo-

mentum constraint (4) in the presence of both a WD and
a BH. Next, we solve the Hamiltonian constraint (4) with
Āi j = Ābh

i j + Āwd
i j andρ̄∗ given by (9). We use the popular ansatz

φ = 1+
Mbh

2r
+ u. (12)

Thus, equation (3) becomes an equation foru. In (12), the
first term is the flat space solution to (3) ; the second is the BH
solution; and the third termu includes both the gravitational
potential of the WD as well as the interaction effects with the
BH.

To test our initial data method, and in particular to assess
the importance of the WD-BH interaction effects, we compute
initial data for a WD initially at rest; that is,̄Ji = 0 and thus
Āwd

i j = 0. In addition, we assume a non-spinning BH, i.e.Ābh
i j =

0. The Hamiltonian constraint (3), with the help of (12), takes
the form

∆̄u = −16πφ−3ρ̄∗ . (13)

The solution to (13) is shown in Figure 1. For color versions
of the figures in this paper see the electronic edition of the
Journal. Also in Figure 1 is the solutionuwd to equation (13)
without the BH; that is, withMbh = 0 in (12). The difference
betweenu anduwd is entirely due to the gravitational interac-
tion of the WD with the BH.

1

1.5

2

2.5

3

3.5

4

-1 -0.5 0 0.5 1

u
×

10
4

r/Rwd

u

uwd

FIG. 1.— Solutionu to equation (13) for a WD at rest a distance 15Rwd
away from a non-spinning IMBH. The solutionu provides not only the grav-
itational potential of the WD but also includes the full non-linear interac-
tions with the IMBH. For comparison, we plot alsouwd, the solution to equa-
tion (13) for a WD in isolation.

We also tested the ability of our method to produce stable
isolated WD models and to conserve rest mass. We found
that, over six dynamical times, the central density of the WD
did not change more than 1.2% of its initial value and rest
mass was conserved at the 0.1% level. This is in spite of the
adaptive mesh refinement infrastructure we use (CARPET) not
being designed to accurately preserve rest mass conservation
when interpolating between different refinement levels.

3. SIMULATION RESULTS

3.1. Tidal Disruption Simulation Parameters

Our study consists of a series of six simulations. As
mentioned before, the IMBH has a massMbh = 103M⊙,
and the WD has a massMwd = 1M⊙ and radiusRwd ≃
6,000km (Hamada & Salpeter 1961). The WD mass and ra-
dius correspond to a central densityρinitial = 1.33×107gcm−3,
Γ = 5/3, and polytropic constantK = 2.41×10−9(cm3 g−1)Γ−1.
All the simulations start with the WD in a parabolic orbit, in
the Newtonian gravity sense, a distance 1.5Rt ≃ 60Rg along
the negativêx-axis away from the IMBH. The orbital angular
momentum of the WD is aligned with thêz-axis, as depicted
in Figure 2.

Table 1 lists the configurations used in the simulations
whereβ = Rt/Rp is the penetration factor for an orbit with



4 Haas, Shcherbakov, Bode, & Laguna

Rt

Rp

φ
x

z yθ

S

L

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

FIG. 2.— Configuration setup of our simulations. The WD is located a dis-
tance 1.5Rt ≃ 60Rg along the negativêx-axis away from the BH. The orbital
angular momentum~L of the WD is aligned with thêz-axis. The orientation of
the BH spin~S is determined by the standardθ andφ angles in a right handed
spherical coordinate system.

pericentric distanceRp, anda⋆ = |~S|/M2 is the magnitude of
the dimensionless spin parameter of the IMBH. The anglesθ
andφ determine the direction of the BH spin. They are the
standard angles in a right-handed spherical coordinate system
as depicted in Figure 2. We use the following convention to
label the cases we studied. If a case is labeled "BxSy", the
WD had penetration factorβ = x. In addition, the value of y
denotes a non-spinning BH (y=0) or the BH’s spin orientation:
(up, down, in-plane, arbitrary) for y = (u,d,i,a), respectively.

Run β a⋆ θ φ

B6S0 6 0.0 0◦ 0◦

B6Su 6 0.6 0◦ 0◦

B6Sd 6 0.6 180◦ 0◦

B6Si 6 0.6 90◦ 0◦

B6Sa 6 0.6 63◦ 90◦

B8Sa 8 0.6 63◦ 90◦

TABLE 1
SIMULATION PARAMETERS: β = Rt/Rp IS THE PENETRATION FACTOR,

a⋆ = |~S|/M2 IS THE DIMENSIONLESS SPIN PARAMETER OF THE CENTRAL

BLACK HOLE , θ AND φ ARE THE ANGLES BETWEEN~SAND THE ORBITAL
ANGULAR MOMENTUM (ẑ-AXIS ) AND THE RADIAL DIRECTION JOINING

THE IMBH AND THE WD (x̂-AXIS ), RESPECTIVELY.

In all the simulations, we employ eight levels of mesh re-
finement with radii 1.24Rg×2ℓ (0≤ ℓ≤ 7) centered at the BH
location. In addition to these refinement levels, we surround
the WD during the pre-disruption phase with five additional
nested boxes of radii 4.96Rg× 2ℓ (0 ≤ ℓ ≤ 4). The resolu-
tion on the finest refinement isRg/19.35, the resolution on
the level covering the WD isRg/9.675. This mesh refinement
setup becomes insufficient when the WD begins to be dis-
rupted. At this point, we turn off the boxes tracking the WD
and construct a larger mesh with resolutionRg/9.675 that in-
cludes both the IMBH and the highly distorted WD. Once the
expanding debris has cleared the inner region and the density
has dropped, we turn off this level again to speed up the sim-
ulation.

The mesh refinements affect our ability to conserve rest
mass throughout the computational domain, in particular if
the meshes are moving, created, or removed. Figure 3 dis-
plays the relative gain/loss of rest mass in the computational
domain,δM/Mwd = (M−Mwd)/Mwd, whereM is the total rela-
tivistic rest mass andMwd the initial WD rest mass. The com-
puted value ofM takes into account the mass loss through the
BH horizon and the outer boundary of the computational do-
main. We find tolerable mass conservation, with violations of

less than 4% over the course of the simulations. Runs B6Su
and B6S0 display the worst mass conservation. As we shall
see, these are the cases in which most of the material of the
star (& 95%) escapes the BH, forming an expanding cloud
that reaches the coarsest mesh refinements. Notice also that
most of the errors in mass conservation accumulate after the
disruption. Run B6Sd is the only run that loses mass. This
is the case in which the IMBH accretes almost all of the star
during the initial passage of the WD.

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-2 -1 0 1 2 3 4 5 6 7

δM
/M

w
d

time after disruption (s)

B6S0
B6Su

B6Sd
B6Si

B6Sa
B8Sa

FIG. 3.— Relative gain/loss of rest mass in the computational domain,
δM/Mwd = (M − Mwd)/Mwd, whereM is the total relativistic rest mass and
Mwd the initial WD rest mass. The total relativistic rest massM takes into
account fluxes into the BH. The only simulation run displaying a net mass
loss is the case B6Sd in which almost all the material accretes promptly. In
the other cases, most of the mass gain happens in the short high compression
phase when the WD is at its periapsis point close to the BH.

3.2. Tidal compression

The first stage in a tidal disruption encounter consists of
the deformations that the incoming star experiences due to
the tidal forces. In the orbital plane of the star, there are two
competing tidal deformations. One of them is tidal stretch-
ing along the radial direction joining the IMBH with the WD.
The other is tidal compression perpendicular to this radialdi-
rection. In the direction perpendicular to the orbital plane,
there is also tidal compression. This compression, or squeez-
ing, is stronger than that in the orbital plane because in the
latter the radial direction changes rapidly as the star reaches
periapsis, thus modifying the “contact point” in the star of
the in-plane compression. We concentrate here on the com-
pression in the direction perpendicular to the orbital plane.
This compression could, in principle, generate enough heat
to detonate the star (Luminet 1985; Luminet & Marck 1985;
Luminet & Pichon 1989) by igniting nuclear reactions at the
core of the WD (Rosswog et al. 2009). To investigate whether
a nuclear ignition is likely to happen from tidal compression,
we plot in Figure 4 the instantaneous maximum temperature
of the star as a function of the density at that location. To
a good approximation, this density is also the instantaneous
maximum density. The instantaneous maximum temperature
is computed as the mass-density-weighted temperature aver-
age of the portion of the star whose numerical cells that have
the largest internal energy and make up for 10% of its mass.

We calculate temperaturesT from the thermal specific en-
ergy as (see Lee et al. (2005))

mpnnucεth =
3
2

kBT(Nion + Ne)nnuc+ aBBT4, (14)



Tidal disruption of white dwarfs by intermediate mass blackholes 5

7

7.5

8

8.5

9

9.5

10

6 6.5 7 7.5 8

lo
g(

T m
a

x)
(K

)

log(ρmax) (g cm-3)

tign < tdyn

tign > tdyn

B6S0
B6Su
B6Sd
B6Si
B6Sa
B8Sa

FIG. 4.— Instantaneous maximum temperature as a function of thedensity
at the same location. We compute the density-weighted temperature average
of the hottest cells in the grid which make up 10% of the total rest mass of
the WD. The dotted black line separates regions in parameterspace where
the ignition time as estimated from Figure 2 of Dursi & Timmes(2006) is
larger/smaller than the dynamical timescale of the WD, i.e.the region of
successful explosion from the region where the explosion fails. Densities
smaller than 107 gcm−3 are not present in Figure 2 and the estimates for the
ignition time in this region are based on simple linear extrapolation. In all
cases investigated, the ignition timescaletign of the WD is much shorter than
the dynamical timescaletdyn = 1/

√
Gρ & 0.38s of the WD.

with

εth = ε−
Kinitial

Γ− 1
ρΓ−1, (15)

where the second term in equation (15) is the “cold” specific
internal energy in the absence of shocks.Ne is the number of
electrons per nucleon making up the gas,Nion is the number
of ions per nucleon,nnuc is the number density of nucleons in
the gas,mp is the proton (nucleon) mass,kB is the Boltzmann
constant, andaBB here is the radiation constant. For simplicity
we assumeNion = 1/14, for an equal mixture of oxygen and
carbon atoms. ForNe, which depends on the ionization state
of the plasma, we useNe = 0 for T . 5×106K andNe = 1/2
for 5×106K . T . 1×1010K. That is, we ignore any partial
ionization states of the constituent atoms at low temperatures.

In all cases investigated, the maximum temperature and
density displayed in the tracks of Figure 4 reach high enough
values to trigger nuclear burning in the star (cf. Figure 2
of Dursi & Timmes (2006)). Interestingly, the temperature-
density tracks in Figure 4 are qualitatively similar to those
by Rosswog et al. (2009), who included nuclear networks.

Run β∗ Tmax (109K) ρmax/ρinitial facc funb

B6S0 8.9 8.6 7.5 68% 19%
B6Su 9.44 6.6 9.3 < 1% 60%
B6Sd 11 12 3.2 > 99% < 0.5%
B6Si 7.6 8.6 3.3 65% 22%
B6Sa 9.1 6.0 8.1 2% 67%
B8Sa 10 9.1 4.0 43% 34%

TABLE 2
ACTUAL PENETRATION FACTORβ∗ MEASURED FROM THE

SIMULATIONS. MAXIMUM TEMPERATURE Tmax AND COMPRESSION
ρ/ρINITIAL WITH ρINITIAL = 1.33×107 gcm−3. FRACTION fACC OF THE

STAR ACCRETED DURING THE FIRST2sAFTER DISRUPTION, UNBOUND
FRACTION fUNB AT THE END OF THE SIMULATION AT ∼ 6s.

In Table 2, we list the maximum temperatureTmax and
compressionρmax/ρinitial . HereTmax andρmax are the max-
imum temperature and density attained over the course of
the evolution. We also list the “actual” penetration factor

β∗ = Rt/R∗
p. Recall that the orbital parameters, and in partic-

ularRp, used to set the WD in a parabolic orbit were obtained
using Newtonian gravity. Because of relativistic effects,the
value ofR∗

p will differ from the Newtonian estimateRp, and
thusβ 6= β∗. In our simulations, we defineR∗

p as the distance
of closest approach of the point within the WD whereTmax,
or equivalentlyρmax, is found. Notice that for the B6Su and
B6Sd cases,Tmax almost doubles andρmax triples when go-
ing from a spin aligned with the orbital angular momentum
to one that is anti-aligned. This is because in the anti-aligned
case (B6Sd), the WD penetrates closer,β∗ = 11, than in the
aligned case (B6Sd),β∗ = 9.4. Figure 5 shows the maximum
temperatureTmax and maximum densityρmax as a function
of the actual penetration factorβ∗ from Table 2. Because
of the small range of values covered byβ∗, it is not possi-
ble to verify the scalingTmax ∝ β2 andρmax ∝ β3 suggested
by Carter & Luminet (1982)
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FIG. 5.— Maximum densityρmax (top) and temperatureTmax as a function
of β∗ for the values in Table 2.

3.3. Outflowing debris and spin

All cases showed that the mass and orientation of the debris
after disruption is strongly affected by the BH spin. This is
because the spin determines the location of ISCO radius, and
it is also responsible for frame-dragging effects. In particu-
lar, frame-dragging pulls the material out of the orbital plane,
thereby changing the orientation of the resulting disk.

We first discuss three disruptions: disruption by a non-
spinning IMBH (case B6S0), by an IMBH with spin aligned
(case B6Su), and by an IMBH with spin anti-aligned (case
B6Sd) relative to the orbital angular momentum (see Ta-
ble 2). For the spinning BH cases, the magnitude of the di-
mensionless spin parametera∗ was kept at 0.6. With this
spin magnitude,rISCO = 5,670km for the case B6Su, and
rISCO = 11,600km for the case B6Sd. In the non-spinning
case,rISCO = 9,000km (McClintock et al. 2011). All three
cases had penetration factorsβ = Rt/Rp = 6. From equa-
tion (2), Rt = 40Rg = 60,000km, thus a penetration factor of
6 translates to a pericentric distanceRp ≃ 10,000km. We
then expect that the WD in the retrograde case B6Sd will
pass within the ISCO; in the prograde case B6Su the star will
mostly stay outside of the ISCO; and in the case B6S0 the
WD will graze by the ISCO. BecauserISCO> Rp in the B6Sd
case, almost all of the star is accreted by the BH soon after the
disruption. For the cases B6S0 and B6Su, on the other hand,
most of the stellar debris escapes direct capture, expanding
away from the hole. The debris cloud has a shape resembling
a thick circular arch. This arch-like cloud eventually closes
up and forms a disk around the BH.
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In all cases, the leading edge of the tidally-disrupted star
wraps around the BH and crashes into the trailing material
creating a hot region. For the B6Su, B6Sd and B6S0 cases,
this hot region is mostly contained within the equatorial plane
and moves outwards from the central region in the form of a
spiraling disturbance in the debris disk, eventually appearing
on the debris surface. Figure 6 shows snapshots in the or-
bital plane of the density (top row) and temperature (bottom
row) for runs B6Si and B6Su. The snapshots in the left col-
umn are for the case B6Si∼ 0.5 seconds after disruption. The
middle and right columns correspond to case B6Su∼ 0.5 sec-
onds and∼ 5.9 seconds after disruption, respectively. In the
aligned case B6Su, the hot region forms a spiral which moves
outwards from the point where the leading edge of the WD in-
tersected with the tail material. At late times this featurehas
been washed out. In run B6Si the hot region is much smaller;
frame dragging by the BH has pulled material out of the plane
into a shell surrounding the BH.

For the cases in which the spin of the BH is not aligned
with the orbital angular momentum of the binary (i.e. B6Si,
B6Sa and B8Sa cases), frame dragging is effectively able to
wrap the debris material around the BH. This effect – which
is not captured by Newtonian calculations – greatly changes
the geometry of the debris, blanketing the central region with
a shell-like cloud of gas. We will address the observational
consequences of the material surrounding the BH in the next
section. The effect of the misalignment is evident from Fig-
ure 6 in the remarkable differences of the spiral patterns ob-
served between the left and middle snapshots at∼ 0.5 seconds
after disruption. The left panels are for the B6Si case in which
the BH spin direction is perpendicular to the orbital angular
momentum. On the other hand, the middle panels are for the
B6Su case in which the BH spin is aligned with orbital angu-
lar momentum. The observed differences are a consequence
of how the debris responds to the orientation of the BH spin.

3.4. Prompt and late accretion

We observe an initial prompt phase of accretion when the
star swings by the BH. This prompt accretion phase is fol-
lowed by an intermediate phase in which material initially de-
flected by the BH slows down and begins to accrete. At late
times, long after the end of our simulations, the characteristic
t−5/3 fallback behavior takes over.

Figure 7 shows the flow of matter through the IMBH’s
horizon during the first six seconds after the disruption takes
place. The instant labeledttidal is the time at which the star
enters the tidal radius. The horizontal dashed line labeled
“noise” denotes the level of accretion due to the atmosphere
used to model the vacuum regions. We observe that the mag-
nitude of the prompt accretion rate decreases the more pro-
grade an orbit is. Both B6S0 and B6Su disrupt at comparable
distances from the central BH, but the peak accretion rate dif-
fers by almost two orders of magnitude.

As already pointed out in Section 3.3, the BH spin strongly
affects what fraction of the star is accreted onto the BH soon
(∼ 2 s) after the star disrupts. Table 2 shows this accreted
fraction for each case. In the B6Sd case, the star is completely
accreted. On the other hand, the debris in the B6Su and B6Sa
cases escapes almost in its entirety during the flyby. Notice
also from Table 2 that the prompt accretion is also correlated
with the maximum densityρmax the WD is able to reach as a
consequence of the tidal compression.

The late-time behavior consists of material raining back

onto the BH with a characteristic rate of accretionṀ ∝
t−5/3 (Rees 1988; Phinney 1989). This rate is maintained
as long asdM/dεkin, with εkin being the specific kinetic en-
ergy, is approximately constant (Lodato et al. 2009). We fol-
low Rosswog et al. (2009) and compute the fallback time for
each fluid element at a time long after disruption, based on
data available at the end of the simulation. At this time, hydro-
dynamical interactions between the fluid elements are small,
and each fluid element moves on an almost geodesic orbit.
Figure 8 shows the results of these calculations. Clearly we
recover the expectedt−5/3 behavior for return times longer
thant & 200s. Notice that earliest times in Figure 8 are com-
parable to the late time accretion rates found during the simu-
lation in Figure 7.

4. ELECTROMAGNETIC SIGNATURES

Ultra-close (i.e.Rp ∼ few Rg) tidal disruptions are violent
events. The conversion of even a small fraction of gravita-
tional energy into light would result in a powerful electromag-
netic signature. In this section we will use the hydrodynamics
results from our simulations to make order of magnitude esti-
mates of the tidal disruption flare’s luminosity, its characteris-
tic photon energy, and the fallback material’s electromagnetic
signature as it eventually forms a slim accretion disk near the
BH.

When the WD descends into the potential well of the BH,
with the typical dynamical timescale of∼ 1 s, it acquires
energy in excess of∼ 1053erg. Even if a tiny fraction of
this energy gets converted into radiation on this dynamical
timescale, it would lead to a huge luminosity which would
be noticeable at cosmological distances. Furthermore, since
the WD undergoes a substantial acceleration in the deep grav-
itational potential of the BH, the streams of matter from
the disruption will approach speedsVp ≃ (GMh/Rp)1/2 ≃
c(βRg/Rt)1/2 ≃ 0.4β6c, comparable to the speed of light.
The streams of tidal debris later collide and transform a por-
tion of their kinetic energy into thermal energy. Being heated
by this process in excess of 109 K, the dense hot plasma
quickly produces photons (Krolik & Piran 2011). These pho-
tons, however, are effectively trapped by the debris, capping
the luminosity around the Eddington luminosity (Eddington
1926)

LEdd =
4πcGMhmp

σT
= 1.4×1041

(

Mh

103M⊙

)

erg s−1, (16)

wheremp is the proton mass andσT is the Thomson cross-
section. Notice that the equilibrium between the gravita-
tional and spherical radiation fields is reached at a luminos-
ity L = 2LEdd = 2.8× 1041erg s−1 due to composition effects.
The system can by far exceedLEdd in the presence of a colli-
mated outflow, especially in the first several minutes after the
disruption. We elaborate on this tidal disruption phenomenon
in a subsequent paper (Shcherbakov et al. 2012, in prep). In
the present manuscript we limit ourselves to electromagnetic
signatures at late times of months to years.

When the accretion rate falls below the Eddington rate
ṀEdd, the accretion becomes radiatively efficient, radiating
mostly in X-rays with luminosity∼ LEdd. Assuming an ef-
ficiency ofǫ = 0.1, this luminosity translates into an accretion
rate

ṀEdd =
LEdd

0.1c2 = 2.3×10−5

(

Mh

103M⊙

)

M⊙ yr−1. (17)
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FIG. 6.— Snapshots in the orbital plane of the density (top row, in gcm−3) and temperature (bottom row, in K) for runs B6Si and B6Su. The snapshots in the
left column are for the case B6Si∼ 0.5 seconds after disruption. The middle and right columns correspond to case B6Su∼ 0.5 seconds and∼ 5.9 seconds after
disruption, respectively.
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The time elapsed until the accretion rate drops toṀEdd can be
estimated based on the fallback times reported in § 3. We have
demonstrated that the famoust−5/3 fallback law (Rees 1988)
is also present in our ultra-close encounters. From Figure 8,
we observe that the accretion rate in all but the B6Sd case
drops belowṀEdd at times oftEdd∼ 1− 2 yrs. Thus the tidal
events we are considering can, in principle, shine at Edding-
ton luminosities for many years. The actual luminosity could
be substantially sub-Eddington, though, if outflowing debris
produced while the BH swallows matter at super-Eddington
rates obscures the accretion flow. In this section we will first
estimate the disk emission within a slim disk model and then
consider the added effects of obscuration by the outflowing
debris.
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FIG. 8.— Mass accretion rates computed from the estimated fallback times
of the fluid elements. The solid line represents thet−5/3 falloff predicted in
Rees (1988); Phinney (1989).

4.1. Slim Disk Model

For our study we employ a slim disk model, developed
and summarized in Abramowicz et al. (1988); Lasota (1994);
Kawaguchi (2003); Sadowski (2009), of a simple one-zone
vertically-integrated dynamical model. We compute modified
black-body bremsstrahlung emission from the disk. For our
radiation estimates, we assume that the angular momentum of
the marginally bound debris accreting at late times, and thus
the angular momentum of the disk, are aligned with the orbital
angular momentum of the incoming WD. The disk model will
then, in principle, be misaligned with the spin of the BH. We
presume that, despite the misalignment, the slim disk extends
down to ISCO radius computed for the aligned case. In our
situation it is challenging to find a more reasonable set of as-
sumptions for a geometrically thick slim disk. The ultimate
answers require performing full numerical relativity simula-
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tions of the fallback regime, a task requiring modeling dy-
namical timescales 106 times longer than those addressed in
the present study.

We take our heavy white dwarf to consist of approximately
50% carbon and 50% oxygen as suggested by stellar evo-
lution computations by Mazzitelli & Dantona (1986). The
same heavy white dwarf composition was assumed by both
Rosswog et al. (2009) and Krolik & Piran (2011). Thus there
is 1/14 nuclei and 1/2 electrons per one nucleon with mass
≃ mp. In terms of nucleon density, the ion and electron den-
sities are

nion =
1
14

nnuc and ne =
1
2

nnuc, (18)

respectively. The corresponding non-relativistic heat capacity
of neutral and fully-ionized gas per single nucleon of temper-
atureT are

cneutral=
3
28

kBT and cion =
6
7

kBT, (19)

respectively. The energy of full ionization isECNO =< Z2 >
13.6eV= 680eV for the assumed composition, whereZ≈ 7 is
the charge of the nucleus. A CNO WD is thus fully ionized at
T > Tion ∼ 5×106K. The molecular mass of the fully-ionized
plasma isµ = 1.75, and its density isρ = mpnnuc.

A fully self-consistent model of a slim disk requires an
estimate of the disk scale-heightH. For a disk in the
super-Eddington regime,H/r = 1 (Abramowicz et al. 1988;
Kawaguchi 2003; Strubbe & Quataert 2009). In our simu-
lations, circularization of debris happens within a distance
30Rg from the BH. We therefore consider a truncated disk
located between the ISCO radiusrISCO and the maximum ra-
dius rmax = 30Rg. The viscosity parameter is taken to be
α = 0.1. We solve the equations for the central temperature
as detailed below, taking into account the effects of viscous
heating, emission, and the finite heat capacity of matter. For
simplicity, we follow Shakura & Sunyaev (1973) and set the
viscous stress at the ISCO to zero. The energy release per unit
disk area is then

F+ =
3rgṀc2

8πr3

[

1−
(rISCO

r

)1/2
]

. (20)

The accretion rate is expressed as

Ṁ = 4πrHρcvr , (21)

whereρc is the one-zone density andvr > 0 is the inflow ve-
locity.

We adopt a beta disk model where the viscous stress
is given by trφ = αpg with pg being the gas pres-
sure (Sakimoto & Coroniti 1981). A beta disk model is one
of three options. In the standard Shakura & Sunyaev (1973)
model,tφ ∝ ptot = pg + prad, whereas in the “mean field” mod-
els tφ ∝ √

pgptot (see e.g. Done & Davis 2008 for a review).
There is no definitive answer yet about which model better
describes stress in a radiation-dominated accretion disk.The
beta disk modeltrφ =αpg assumption leads to a radial velocity
of plasma

vr ≈ αcs = α

√

kBTc

µmp
, (22)

wherecs is the isothermal sound velocity. The expression (22)
for radial velocity, though not fully self-consistent, helps to

avoid the infinite increase of the density near the ISCO inher-
ent to early slim disk models (Abramowicz et al. 1988).

The accretion disk emits predominantly bremsstrahlung ra-
diation. Since the scattering cross-section in the disk is
much higher than the absorption cross-section, the emis-
sion spectrum is described by a modified black body
spectrum (Rybicki & Lightman 1979; Czerny & Elvis 1987;
Kawaguchi 2003). The photon production rate via
bremsstrahlung is (Rybicki & Lightman 1979; Katz et al.
2010)

Q =

√

8
π
α f Z

2nionneσTc

√

mec2

kBTe
Λeff geff cm−3s−1, (23)

whereΛeff ∼ geff ∼ 1, α f ≈ 0.00729 is the fine structure con-
stant andσT is the Thomson cross-section. With the high den-
sities, the production rateQ is high so the radiation quickly
dominates internal energy and pressure.

Let us estimate the equilibrium temperature of this
radiation-dominated flow. The typical nucleon density in the
simulation varies fromnnuc∼ 1025cm−3 near the BH, to a min-
imum of nmin,nuc ∼ 8×1020cm−3. The typical virial tempera-
ture isTion ∼ 1011 K. As photons are produced, the equilib-
rium implies

6
7

nnuckBTion = aBBT4
ph, (24)

leading to photon temperaturesTph∼3×108 K. The timescale
for reaching equilibrium can be estimated as

teq∼
aBBT4

ph

kBTph

1
Q(Tph)

= 9×1010T7/8
ion

n9/8
nuc

∼ 10−8s, (25)

which is significantly shorter than the dynamical timescale
torb ∼ 1 s.

We work in the diffusion approximation of high optical
depth to find the surface temperature. The corresponding scat-
tering opacity,τsc≫ 1, is much larger than the bremsstrahlung
absorption opacityτabs. The electron scattering opacity is

κsc =
σTne

mpnnuc
≈ 0.2cm2 g−1, (26)

whereas the absorption opacity is

κabs=
(1− e−x)e6h2Zρc

3ck3
Bmem2

pT7/2
s x3

√

2π
kBme

=
4.4×1025(1− e−x)ρc

T7/2
s x3

(27)

wherex = hν/(kBT) (Shapiro & Teukolsky 1986). The total
emitted power through one side of the disk with surface tem-
peratureTs is then

F− =
aBBc

4
T4

s

√

κ̄abs

κ̄sc
, (28)

where, in a one-zone model, the central density is taken
as a proxy for the surface density. Herēκ denotes
mean opacities. We use here the Rosseland mean opacity
(Shapiro & Teukolsky 1986),̄κabs= 3.2×1022Zρc T−7/2

s .
The energy flux delivered to the surface is

Fsurf = F− =
aBBc

3
T4

c

τsc
. (29)
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To sustain the radiation flow through the surface, this energy
flux is equal to the radiated flux. Thus from (28) and (29)
we obtain thatTs ∝ T16/9

c . In a slim disk, cooling does not
balance heating,F+ 6= F−. The residual energy is stored within
the accreting material. The energy balance can then be written
as

Q = F+ − F−, (30)

where the residual energy per unit surface area is given as

Q = ∆U + A =
4
3

HaBBT4
c

(

3
1
Tc

dTc

dt
−

1
ρc

dρc

dt

)

, (31)

wheredt = −dr/vr . We solve the equations (21) and (22) for
the central densityρc. The central temperatureTc is obtained
from equation 30 with the help of (20), (29) and (31). Given
the central density and temperature, we calculate the surface
temperatureTs from (28) and (29) as well as the correspond-
ing spectrum.

Figure 9 shows the dependence of surface temperatureTs
on radiusR for the accretion rates inferred from the output of
the B6Su simulation. Later times correspond to lower accre-
tion rates. The temperatureTs is, in general, higher at higher
accretion rates, i.e. earlier times. This is because the energy
release per unit time goes up with accretion rate while the ra-
diating surface area stays constant. At very lowṀ, our slim
disk accretion model resembles the standard thin disk model
(Shakura & Sunyaev 1973) soTs→ 0 at the ISCO. In contrast,
Ts at the ISCO saturates at the highest accretion rates. With
little energy release,F+ ≫ F− , the energy density is propor-
tional to the accretion rateQ = F+ ∝ Ṁ. In turn, the scattering
opacity is also proportional to the accretion rateτsc∝ ne∝ Ṁ.
The energy density of radiation is proportional toT4

c . In ad-
dition there is a factor ofṀ in both the numerator and the
denominator of the expression (29) for the surface flux. In the
end,Fsurf ∝ Ṁ in the radiatively inefficient regime.

FIG. 9.— Surface temperature of the slim disk for the case B6Su atvarious
times after the disruption. From top to bottom: att = 8 months,t = 2 months,
t = 3 years,t = 10 years, andt = 30 years, respectively. As time progresses
the accretion rate decreases froṁM ∼ 4000ṀEdd to Ṁ ∼ 4ṀEdd. The inner
disk boundary is chosen to be atrISCO = 3.83 Rg.

The corresponding disk spectra are shown in Figure 10.
From top to bottom,νLν as a function of energy are shown
at 2, 8 months, then 3, 10 and 30 years, respectively. LikeTs,
the hard tail of the spectrum also saturates at the highest ac-
cretion rates. On the other hand, the low-energy tail does not
saturate aṫM ∼ 4000ṀEdd. This is because the radiation time
is still shorter then or comparable to the advection timescale
at large distances from the BH, where the low-energy tail is

emitted. As the accretion rate drops with time, the luminosity
(the area under the curve) also drops.

FIG. 10.— Spectrum for the slim disk formed following the tidal disrup-
tion at various times. The spectra shown corresponds to the case B6Su as in
Figure 9. From top to bottom: att = 2 months,t = 8 months,t = 3 years,
t = 10 years, andt = 30 years, respectively. The inner boundary is chosen to
be atrISCO = 3.83Rg. The spectrum gets harder with time, but the luminosity
decreases.

The integrated luminosity is shown in Figure 11 for the case
B6Su. At late times, i.e.t & 2 years, the luminosity is propor-
tional to the accretion rate and decreases ast−5/3. Specifically,
we estimate a luminosityL ≃ 0.05Ṁc2 for our disk model.
Notice that the estimated luminosity in a fully general rela-
tivistic model isL ≃ 0.091Ṁc2 for a thin disk without radia-
tive transfer effects (Bardeen et al. 1972). At early timest .
2 years the luminosity saturates at about the Eddington value
LEdd= 1.4×1041erg s−1. The luminosity at timest < 2 months
is not reliable, since the slim disk model may not be an ad-
equate representation of accretion at ratesṀ > 4000ṀEdd.
For instance, when the outflow from the inner disk is present,
the luminosity may further increase (Owocki & Gayley 1997;
Shaviv 2001; Begelman 2001; Dotan & Shaviv 2011). Such a
computation is, however, beyond the scope of the paper.

FIG. 11.— Light curve (solid line) of the slim disk following thetidal dis-
ruption in the case B6Su. The inner boundary is chosen to be atrISCO =
3.83Rg. The luminosity decreases with time, first slowly, then sharply below
Eddington (horizontal dashed line). The behavior asymptotes to a power-law
L = 0.05Ṁc2 ∝ t−5/3 at low luminosity (inclined dashed line), when all ther-
mal energy is radiated on the way to ISCO. The model cannot be trusted if
luminosity significantly exceeds Eddington value.

We consider now the radiative properties of disks from
the other cases with different penetration parametersβ, spins
magnitudesa⋆, and spin orientations. Figure 12 shows the
disk spectra att = 1 yr after the disruption for all the cases
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studied. In all cases, we assumed a slim disk with inner
boundary atrISCO and outer boundary at 30Rg.

The spectra in Figure 12 are different because of two fac-
tors. The first contributing factor is the accretion rateṀ,
which we parameterize by the fallback time. More debris falls
back onto the BH in the B6Sa case than in the other cases (see
Figure 8). Therefore the spectrum for the B6Sa case is sys-
tematically brighter. Similarly, the lower accretion ratefor the
B6Si case makes its spectrum systematically weaker than the
others. We found that one can achieve coincidence of spectra
among alla⋆ = 0.6 cases with a time shift. That is, at times
when the accretion rateṡM are identical for different simu-
lations, the spectra are also identical. The spectrum for the
B6Sa case at aboutt = 16 months is identical to the spectrum
for the B6Su case att = 12 months and to the spectrum from
the B6Si case at aboutt = 9 months. Also, more matter is
swallowed by the BH initially in the B8Sa case when com-
pared with the B6Sa case, but at later times, less matter that
will be eventually accreted is scattered. Thus the fall back
time is lower for the B8Sa case, resulting in a less luminous
spectrum. The spectra also vary because of changes in the
ISCO radius. For instance, the ISCO is further from the BH
in the B6S0 case with spina⋆ = 0. Since little energy release
is taking place insiderISCO = 6Rg, its spectrum is significantly
softer.

4.2. Obscuration

The edge-on view of a slim disk is self-obscured. The spec-
trum of a self-obscured disk is not easy to determine. We can
approximate the spectrum by assuming that the thick outer
edge atr = 30Rg emits modified black body radiation the way
the top of the slim disk does. The corresponding edge-on
spectrum is included in Figure 12 as the black dotted line. It
is softer, since only the material far from the BH contributes.
The surface area of the thick outer edge is large, though, re-
sulting in a raised low-energy tail.

FIG. 12.— Spectra of our slim disk models att = 1 yr: B6Su case (top
solid/black), B6Si case (bottom solid/green), B6Sa case (short-dashed/blue),
B8Sa (long-dashed/blue), B6S0 case (dot-dashed/red). Differences are due to
changing spin and fallback time. Dotted line corresponds toan edge-on view
of a slim disk for b6ap6 simulation. The edge-on disk has a softer spectrum
and a comparable luminosity.

Besides exploring the properties of a slim disk, we inves-
tigated whether the emission from the disk is visible through
the outflowing debris surrounding the disk. Figure 13 shows
the (cosθ,φ) directions in which the debris is scattered in the
“sky” from the BH point of view. We considered only the
material outside a sphere of radius 150Rg, corresponding to
the boundary between the bound and the unbound matter at

time t ≈ 6 s after the disruption. The unbound matter travels
essentially along straight lines att ≈ 6 s so Figure 13 ade-
quately represents the angular distribution of matter at late
times. White color in Figure 13 indicates there is no matter
traveling in that direction whereas all darker colors indicate
the presence of gas.

The optical depth is very high at directions that are not de-
noted by white. The inner disk would be completely obscured
along those directions. The left panel in Figure 13 shows the
distribution of the scattered debris for the B6Si case. No-
tice that although the debris is scattered all over the sky, there
are some preferential directions manifest as a sinusoid in the
(cosθ,φ) plane. On the other hand, in the case B6Su shown
on the right panel, the debris is scattered preferentially in the
disruption plane. Thus the orientation of BH spin determines
the direction of debris outflow for ultra-close encounters.

We consider now the situation in which we view a WD-
BH system with an unknown orientation. Recall that we have
assumed that the disk at late times is fully aligned with the
initial disruption plane. As discussed before, the disk can,
in principle, be viewed both edge-on or face-on, although the
edge-on disk is self-obscured and has a peculiar spectrum (see
Figure 12). The probability the disk is obscured by the out-
flowing debris is proportional to the solid angle subtended by
the debris. This solid angle corresponds to the normalized sur-
face area on the (cosθ,φ) plane (see Figure 13). There may
in principle be four different types of obscuration: i) edge-
on self-obscured disk also obscured by outflowing debris, ii)
edge-on self-obscured disk unobscured by outflowing debris,
iii) face-on disk obscured by outflowing debris, and iv) face-
on completely unobscured disk.

When the height of the photosphere equals the disk height
H = r (inclinationθ = 45◦), the probability to encounter a self-
obscured edge-on disk ispedge= 71%. The obscuration prob-
ability by outflowing debris is depicted in Figure 14 for both
edge-on and face-on disks. The panels show the probability as
a function of debris location att = 6 s after the disruption. At
that time, the boundary between the bound and the unbound
matter is located at 150Rg. Thus, this obscuration probabil-
ity is also the obscuration probabilitypobs for days to years
later. The obscuration probabilitypobs|edgeof an edge-on disk
can be inferred from the left panel. Since most debris is scat-
tered in the disruption plane, this probability is relatively high.
The values reachpobs|edge≈ 50%, practically independent of
spin value, spin orientation or penetration factor. The obscu-
ration probability of a face-on diskpobs|face can be inferred
from the right panel. Only the fully misaligned case B6Si
scatters significant amount of debris perpendicular to the dis-
ruption plane, which leads to relatively highpobs|face≈ 40%
for this simulation. Partially and fully aligned simulations all
scatter matter within 45◦ from the disruption plane, and thus
cannot obscure the face-on disk, so thatpobs|face = 0%. The
total obscuration probability is

pobs= pobs|facepface+ pobs|edge(1− pface). (32)

The values arepobs≈ 50% for the B6Si case andpobs≈ 30%
for the B6Su, B6Sa, B8Sa and B6S0 cases. The misaligned
simulation withβ = 8 yields a marginally higherpobs|edge=
52% compared to a similar simulation withβ = 6 for which
pobs|edge= 44%. As expected, deeper penetration results in
wider scattering of debris. However, surprisingly, partially
aligned and fully aligned simulations withβ = 6 anda⋆ = 0.6
yield almost the same obscuration probabilities.

We have previously stated that if there is debris along the
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FIG. 13.— Obscuring gas beyondr = 150Rg on the (cosθ,φ) plane for the fully misaligned spin case B6Si (left panel) and fully aligned spin case B6Su (right
panel). Hereθ is an inclination angle of the disruption plane andφ is the azimuthal angle with respect to the BH’s point of view (See Fig. 2).Left: The gas in
this case is scattered to all angles, yet there are substantial holes through which the inner disk could be visible.Right: For this case, the disk will be visible in
directions away from the disruption plane.

FIG. 14.— Obscuration by debris as a function of the debris beyond a radiusrout from the BH. The obscuration probability is the probabilitythat the inner
disk is not seen from a random viewing angle.Left: obscuration probability for an edge-on disk with inclination angles above 45◦ (assuming aligned disk).
Right: obscuration probability for a face-on disk with inclination angles below 45◦. The boundary of bound/unbound matter is aroundr = 150Rg at t = 6 s
after disruption. The unbound matter moves approximately radially so the probabilities atrout = 150Rg (denoted by a vertical line) correspond to obscuration
probabilities days to years later. Lines types correspond to case B6Si (upper solid red), B6Su (two lower solid green lines: the darker ones are computed at earlier
time t = 5.4 s), B6S0 (blue dotted), B6Sd (green dashed), B6Sa (dark dot-dashed), and B8Sa (light dot-dashed). The obscuration probability of an edge-on disk
is about≈ 50% regardless of spin alignment. Only the B6Sd case, with very little debris, exhibits little edge-on obscuration. In turn, the obscuration probability
of a face-on disk depends on alignment. The fully misalignedB6Si case is obscured at 50% for nearly face-on disk orientations whereas the partially misaligned
and aligned cases exhibit no obscuration of a face-on disk.

line of sight, then the inner disk is obscured. However, the op-
tical depth of debris decays as the debris expands and eventu-
ally becomes transparent. Let us estimate the timettrans when
the optical depth of X-ray absorption equals unityτabs = 1.
The actual time will of course depend on the line of sight.
The debris consists mostly of neutral carbon and oxygen with
high absorption cross-sectionσabs ≃ 2× 10−20cm−2 within
0.5− 10 keV photon energy range (Henke et al. 1993). The
typical outflow velocity of the debris is a substantial fraction
of the speed of lightvout ≈ 0.15c. The transparency time is
then

ttrans=

√

funbMwdσabs

56πmppobsv2
out

(33)

where funb is the fraction of outbound material. From our
simulations, we found thatfunb ≃ 22% (funb ≃ 60%) for the

B6Si (B6Su) case. With our obscuration probability estimate
pobs≃ 50% (pobs≃ 30% ) for the B6Si (B6Su) case, we find
thatttrans≈ 2 yr (ttrans≈ 4 yr). The transparency time given by
equation (33) is an underestimate, since marginally unbound
matter moves at speeds lower than the averagevout.

5. GRAVITATIONAL WAVE EMISSION

In addition to producing the electromagnetic signatures
discussed in previous sections, tidal disruptions events
are potential sources of GW radiation. A disruption
event generates a burst of GWs lastingt ∼ Rp/Vp ∼
(R3

p/GMbh)1/2(Kobayashi et al. 2004; Rosswog et al. 2009).
The GW burst produced will have a characteristic frequency
f ∼ (GMbh/R3

p)
1/2 and amplitudeh ∼ (GMwdRg)/(c2RpD),

with D the distance to the BH. For the case of a WD disrupted
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by an IMBH (Rosswog et al. 2009),

f ∼0.78β3/2

(

Rwd

0.86R⊕

)−3/2( Mwd

1M⊙

)1/2

Hz (34)

h∼5.9×10−20β

(

D
20kpc

)−1( Mwd

1M⊙

)4/3

(

Rwd

0.86R⊕

)−1( MBH

103M⊙

)2/3

. (35)

These estimates place the GWs from these events at the
low frequency edge of the advanced LIGO design sensitiv-
ity range. At this edge, the equivalent strain noise is∼
10−22Hz−1/2 (LIGO Scientific Collaboration 2009).
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FIG. 15.— Gravitational wave strain as calculated in full general relativity
(solid red) and from applying the quadrupole formula (dashed blue) for B6Sa
at a distance of 20 kpc. Depicted are the two polarizations,h+ (top) andh×
(middle), as well as the amplitude (bottom).

In Figure 15, we compare the GW strain extracted from the
spacetime (solid red) to that obtained using the quadrupole
formula Rosswog et al. (2009) applied to the WD’s center of
mass trajectory (dashed blue) for B6Sa. While the qualitative
behavior of the two polarizations,h+ (top) andhx (middle),
are similar, the fully nonlinear GW strain differs in both am-
plitude and phase.
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FIG. 16.— Gravitational wave strainh from disruption events at a distance
of 20 kpc. Depicted are the two polarizations,h+ (solid red line) andh×
(dashed green line) for cases B6Sa (top) and B8Sa (bottom).

In Figure 16, we show the GW strain as a function of time
for disruption events at a distance of 20 kpc. Depicted are
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FIG. 17.— Power spectrum of theh+ polarization of GWs for all considered
cases. We include the advanced LIGO design sensitivity (double-dashed line)
for comparison. All cases indicate a characteristic frequency of 3.2 Hz. At
low frequencies,∼ 1 Hz, there is a hint of a dependence of the amplitude on
the spin orientation.

the two polarizations of GWs:h+ (solid red line) andh×
(dashed green line) for cases B6Sa (top) and B8Sa (bottom).
Time t = 0 denotes approximately the time when the disrup-
tion takes place. Evident is the burst-like nature of the GWs.
Notice that both cases exhibit comparable burst duration and
strain amplitude. This is expected since the only difference
between B6Sa and B8Sa is their value ofβ. Although we
have stated that case B6Sa hasβ = 6 and B8Sa aβ = 8, from
Table 2, we have that the actual penetration factor for both
cases isβ∗ ≃ 10. Interestingly, the other cases also showed
comparable burst durations,∼ 4s, suggesting a weak depen-
dence with the orientation of the spin and penetration factor.

Figure 17 shows the power spectrum for all the cases inves-
tigated where we assume that the events took place at a dis-
tance of 20 kpc. All cases indicate a characteristic frequency
of ∼ 3.2 Hz. This is about an order of magnitude smaller that
the estimated frequency using (34) withβ∗ ≃ 9, the average
real penetration factor (see Table 2). This should not be too
surprising since rough estimates using (34) and (35) do not
take into account, among other things, spin effects. Similarly,
Figure 17 shows characteristic strain amplitudes of∼ 10−18,
an order of magnitude higher than the estimate using (35) with
β∗ ≃ 9.

At low frequencies,∼ 1 Hz, we note that the B6Sa and
B6Su cases in particular have higher strain amplitude than the
rest. Interestingly, these are the same cases which, as seenin
Fig. 7, exhibit significantly lower prompt accretion in the first
second after disruption and higher accretion in the∼ 1−2 s af-
ter disruption. The third case with higher prompt accretionin
the∼ 1−2 s interval, B8Sa, however, exhibits the lowest low-
frequency tail. This suggests that relativistic effects create an
entangled parameter space involving spin and penetration fac-
tor during the disruption phase. Given that the actual penetra-
tion factors in all the cases were comparable, 7.6≤ β∗ ≤ 11,
further study is required to explore this parameter space.

Synergistic observations of electromagnetic emission from
the prompt accretion discussed in Section 4, together with
GW detections, may provide ways to measuring the spin of
the BH since in both instances the emission seems to depend,
although not strongly, on the spin orientation. We are cur-
rently expanding the parameter space covered by our simu-
lations to investigate this dependence in more detail. Multi-
messenger observations will be, of course, only possible if
the prompt electromagnetic emission is not obscured by the
debris surrounding the BH. If such obscuration prevents ob-
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serving prompt accretion, the detection of a GW burst would,
in that case, still serve as an identifying precursor to the ob-
servations of the late fallback electromagnetic emission.

6. RATES AND OBSERVATIONAL PROSPECTS

6.1. Tidal Disruption Rates

The disruptions of stars by BHs are rare events. More
studied are tidal disruptions of stars by SMBHs in galactic
centers. Their rate 10−5yr−1 per galaxy was predicted the-
oretically by (Magorrian & Tremaine 1999; Wang & Merritt
2004) and found consistent with observations by ROSAT
(Donley et al. 2002), XMM-Newton (Esquej et al. 2007), and
GALEX (Gezari 2010). The volume density of SMBHs is
about (Tundo et al. 2007)

nSMBH = 10−2Mpc−3, (36)

which leads to tidal disruption rate per unit volume

RSMBH = 102yr−1Gpc−3. (37)

The rate of disruption of stars in globular cluster (GC) is
much less certain. Baumgardt et al. (2004) predicts that, for a
GC with 103M⊙ BH, the optimistic disruption rate of stars is
10−7yr−1 per GC. According to McLaughlin (1999), the mean
GC mass isMGC = 2.4 ·105M⊙, which is larger than clusters
considered in Baumgardt et al. (2004). For a largest cluster
simulated by Baumgardt et al. (2004) withN = 131,072 stars
they find 15% of disrupted stars to be WDs. Therefore the
optimistic rate of WD-IMBH tidal disruptions is

D = 1.5 ·10−8yr−1 (38)

per cluster. The number of GCs changes dramatically from
one galaxy to another (Harris 1991). However, GCs have
about constant formation efficiencyǫcl = 0.0026 (McLaughlin
1999), which is the ratio of GC mass to the initial mass of gas
in a galaxy. We assume half of baryonic matter in galaxies,
take the Hubble constantH0 = 70.4km s−1Mpc−1 and current
baryonic contentΩb = 0.00456 (Komatsu et al. 2011) and find
the number density of GCs as

nGC = 0.5
3H2

0

8πG
Ωbǫcl

MGC
= 34Mpc−3. (39)

This density overpredicts the number of GCs in the Milky
Way, but is consistent with the overpopulated with GCs ellip-
tical galaxies such as M87. It is not known, what percentage
of GCs contains an IMBH. For an optimistic estimates, we
take one 103M⊙ IMBH per cluster. Then, the disruption rate
per unit volume is

RWD−IMBH = 500yr−1Gpc−3. (40)

This rate is even higher thanRSMBH, but the WD-IMBH dis-
ruptions are much less luminous, so they are harder to find.
Also, the rates of tidal disruptions in GCs are quite uncer-
tain (Baumgardt et al. 2004), so even disproving the rate given
by equation (40) does not necessarily disprove the hypothesis
that every GC has an IMBH.

Out of all tidal disruptions, we focused on ultra-close ones
with the ratio of tidal radius to pericenter distance aboutβ = 6.
These constitute a fraction of all disruptions. For a realis-
tic triaxial potential of a GC, chaotic feeding would prevail
(Merritt & Poon 2004). Chaotic feeding leads to tidal disrup-
tion probability proportional toRp for objects coming within

pericenter distanceRp, as a clear consequence of gravitational
focusing. Therefore, tidal disruptions withβ > 5 constitute
1/5 of all events. The correspondent optimistic rate is

RWD−IMBH ,β>5 = 100yr−1Gpc−3. (41)

6.2. Observations of X-ray Flares

Considered ultra-close tidal disruptions manifest with a
year-long X-ray flare at an Eddington luminosity off the cen-
ter of the galaxy. Tidal disruptions by SMBHs rather produce
an optical flare (Strubbe & Quataert 2009) in the center of the
galaxy. Let us explore if the optimistic high rates of tidal dis-
ruptions are consistent with past observations and if the future
observations have a chance of catching such an event.

ROSAT survey probed all sky down toFROSAT = 4 ·
10−13erg s−1cm−2 flux within 0.1− 2.4 keV band (Voges et al.
2000). The peak of X-ray tidal disruption spectrum at 1 yr
(see Figure 12) is at about 2 keV, so that more than half of
photons are captured. Taking luminosityL = 4.3 ·1040erg s−1

of B6Su simulation att = 1 yr we obtain the maximum dis-
tance of

dROSAT= 25Mpc. (42)

Therefore, the expected number of observed WD-IMBH dis-
ruptions isNROSAT= 0.015, which is consistent with no events.
With Chandra, 100 photons can be obtained over 30 ks from
the source 200 Mpc away and over 1 Ms from the source
1.2 Gpc away, according to the Portable, Interactive Multi-
Mission Simulator (PIMMS; Mukai 1993). However, owing
to a small field of view of the satellite, the careful choice of
field is required to observe at least one event.

In turn, the future mission like Wide Field X-ray Telescope
(WFXT) (Conconi et al. 2010) can detect a substantial num-
ber of events. It is much more sensitive than ROSAT and
observes in the same waveband. The flux limits of 3· 10−17,
5·10−16, and 3·10−15 for deep, medium and wide surveys with
correspondent solid angles 100, 3000, and 20,000 deg2 yield
maximum event distances 2.5 Gpc, 600 Mpc, and 245 Mpc.
This translates into 76, 33, and 16 WD-IMBH disruptions or
5 times fewer ultra-close disruptions.

Tidal disruptions can also produce powerful prompt super-
Eddington X-ray flare with the duration of minutes in addition
to the Eddington-limited X-ray flux on the timescale of∼ 1 yr.
The lightcurve, spectrum and detection prospects will be dis-
cussed in the next paper Shcherbakov et al., (2012, in prep.).

7. DISCUSSION AND CONCLUSIONS

Our work addresses disruptions of WDs by IMBHs. This
is the first fully general-relativistic study that includesboth
strong gravity (the metric of the spinning BH) and dynamical
gravity effects (GWs). We focused on ultra-close disruptions,
where the periapsis radius is comparable to the BH gravita-
tional radius. Our study presents for the first time results on
the influence of the BH spin on the disruption.

Our study made some simplifying assumptions. Instead of
employing a degenerate equation of state for the WD, we used
an ideal gas law. This is, however, expected to have a very mi-
nor effect on dynamics. If the entropy is approximately con-
stant, the evolution of a degeneracy pressure supported star is
identical to that with an ideal gas pressure. The choice of pres-
sure prescription does not matter until shocks and turbulence
take over. Similarly, the absence of explicit radiation pressure
does not influence the initial stages of the disruption. Cold
outflowing debris may not have significant radiation pressure
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support, and only the fallback disk will be radiation pressure
dominated. Radiation emitted from the inner disk may halt
the infall of the marginally bound debris. However, the disk
is self-obscured near the disruption plane where most of de-
bris is scattered, and the photon mean free path is quite small.
The photons cannot thus effectively transfer energy from the
inner flow to the outer flow to unbind the debris. Should radia-
tion pressure be included, the same internal energy contribute
a radiation pressure smaller than the gas pressure, and thusthe
total pressure in the medium would be lower.

Our study does not include nuclear reactions, believed to
be important for deep WD disruptions (Rosswog et al. 2009).
Temperature-density tracks of the matter in our simulations
as depicted in Figure 4 are comparable to those found in Fig-
ure 14 of Rosswog et al. (2009). The tracks suggest that nu-
clear burning of carbon and oxygen should occur in the cases
we studied. The additional energy gained in C and O burn-
ing into Fe is 1 MeV per nucleon (Dursi & Timmes 2006).
This translates to a gain of energy of∼ 0.001M c2. On the
other hand, the descent into the gravitational potential ofthe
BH yields energies of∼ 0.1M c2 for a periapsis radius of
Rp ∼ 10Rg. The dispersion of debris energies after ultra-close
disruptions is also large. Thus, the extra 0.001M c2 energy
from the burning will not likely have a dramatic effect on the
debris. The optical lightcurve may indeed change after an ini-
tially cold white dwarf is heated by nuclear reactions, but the
influence on the fallback disk is expected to be small.

A realistic fallback disk simulation should incorporate mag-
netic fields. Magnetic fields give rise to large viscosity
and allow the disk to self-consistently accrete. The as-
sumed parameterα will be a proxy for viscosity until mag-
netized simulations can be run for a sufficiently long time.
The presence of magnetic fields may readily lead to an out-
flow (Blandford & Payne 1982), which may boost luminosity
far above the Eddington limit or radiation pressure itself may
drive an outflow under certain circumstances (Shaviv 2001).
The duration of our simulations (∼ 7 s) was too limited to
directly model the fallback. The temporal dependence of ac-
cretion rate depicted in Figure 8 is a ballistic guess, basedon a
confirmed flat distribution of mass over energy. Any outflow
or halted inflow at late times may result in deviations of the
fallback law fromṀ ∝ t−5/3.

We make a distinction in the paper between the face-on
and edge-on disks. In reality, only minor differences between
these orientations may exist. The disk with extreme accretion
rate may drive a wind or have a corona, which might com-
pletely obscure the very inner portions of the disk. In such a
case, the spectrum would be similar to an edge-on spectrum
regardless of orientation. The precise quantitative predictions
of spectra will only be possible with detailed numerical sim-
ulations of the fallback accretion.

Our study should be viewed as a step towards realistic tidal
disruptions of WDs by IMBH. Some of the conclusions may
hold up despite our limited understanding of matter fallback
and super-Eddington accretion flows. Our main conclusions

are:

• For a non-spinning BH and a BH with a spin aligned
or misaligned with the orbital angular momentum, the
debris after disruption forms a thick accretion disk.

• For misaligned spins, frame-dragging effects scatter the
debris around the BH and will often obscure the inner
region from observation.

• There is a qualitatively different behavior before and
after a timescale of∼ 1 yr, when the accretion rate ap-
proaches Eddington accretion rate. The accretion flow
luminosity stays aroundLEdd before∼ 1 yr and starts
dropping ast−5/3 afterwards.

• The spectrum peaks at soft X-rays. The spectra are
similar to thin disk spectra at low accretion ratesṀ ≪
ṀEdd,

• Self-obscuration and obscuration by debris are present
in the system. Self-obscuration leads to softer spectrum
while obscuration by debris may make a fallback disk
invisible during most of the active accretion period.

• The GW signal depends weakly on the orientation of
the spin. The GW burst will be challenging to be de-
tected for extragalactic sources.
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