Large scale magnetic fields and Dynamo theory

Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008

The Earth

- Mainly dipolar magnetic field
- Would decay in 20kyr if not regenerated
- Declination of the dipole axis 11.5° (at present)
- Strength B=0.3-0.6G (at present)
- Field reversal interchange of North/South poles, last ~300-3000yr
- Field excursion decrease of B to 0-20% of normal, last ~3000yr-0.03Myr

There are successful simulations: Glatzmaier, Roberts 1996+

http://solar.physics.montana.edu/ypop/Spotlight/Magnetic/what.html

Buffett, 1999 Nature 401, 861

The Sun

- Strong non-dipolar magnetic field
- Typical field strength B~1G, up to 1000G in active regions
- Field reversal 22-year cycle, sunspots 11year cycle (7-15 years for period)
- Has irregular outflows driven partially by magnetic reconnections
 - Differential rotation 25 days (equator) vs 35 days (pole)

http://www.spacedaily.com/reports/ The_Magnetic_Fields_of_Planets_an d_Stars_999.html

Models only with fitted parameters explain observations

Coronal mass ejections

Fan 2001, ApJ, 554, L111

May be the constituent part of dynamo

http://www.space.com/busine sstechnology/technology/techn ovel_shock_041105.html

Energy sources

The Earth and planets

> Radioactive decay – 40 K, 238 U

- Latent heat & light constituents release – inner core freezing
- Precessionally driven flows
 Tidal heating

Convection

The Sun and stars

Nuclear burning
 Dynamical interactions in binaries
 Primordial magnetic field

Convection in rotating medium

Rotation decreases convective efficiency

Back-reaction of convection accelerates rotation

Differential rotation

Dynamo action

Timescales and their ratios

Reynolds number

Large scale of small scale?

The Sun

Large scale

ale?

Small scale

Large scale or small scale?

http://solar.physics.montana.edu/ypop/Spotlight/Magnetic/what.html

Axisymmetric or 3D?

Kinematic α-effect

Then two possibilities: repeat along horizontal axis – α^2 dynamo shear along horizontal axis – $\alpha \Omega$ dynamo

Kinematic α²-dynamo

A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1-209

Fig. 4.6. A schematic illustration of the stretch-twist-fold-merge dynamo.

Kinematic and dynamic $\alpha\Omega$ dynamo

Brandenburg, Subramanian, 2005

Fig. 9.6. Schematic of *kinematic* helical $\alpha\Omega$ dynamo in northern hemisphere is shown in (a) and (b), whilst the *dynamic* helical $\alpha\Omega$

Strong back-reaction of the magnetic field inhibits dynamo $\alpha \rightarrow 0$

Saturation of dynamos

CD – growth of large-scale field on Ohmic timescale (if no shocks) D – quasi force-free state $B^2 > b^2$

Large-scale magnetic field growth

Brandenburg, Subramanian, 2005, p.108

 $<u\cdot\omega>\neq0$ on average over large scale => symmetry breaking

Effect of open boundaries

a-effect is NOT inhibited for open boundaries, unbalanced outflow of current helicity

Sun? Accretion disks?

Accretion disk dynamo

MRI represents Ω-effect Outflows, convection

Velocity in vertical direction => a-effect

> Inverse cascade of magnetic helicity+ advection of field

Large-scale field generation

Model with minimum dynamo action, dynamics, evolution of α , β , γ

Solution of the problem?

Discussion & Conclusions

Behavior of dynamical systems strongly depends on nonlinear terms => proper non-linear model is essential

In particular, solutions with outflows/stratification and vertical structure (for disks) have finite a => large-scale field generation

 Proper treatment of boundary conditions and helicity outflows is essential

Shearing box simulations may not represent the global solution

 One model should be made for accretion & the Sun/Earth, it is easier to test the model on the Sun/Earth

Convection+rotation=>tons of fun

http://www.hao.ucar.edu/Public/research/siv.html

a) Contours of differential rotation, the over-plotted dashed lines indicate a 25 inclination to the axis of rotation as inferred from observations;

b) radial profile of Ω at the latitudes 0°, 15°, 30°, 45°, 60°, and 90°;

c) entropy perturbation
 required to balance differential
 rotation;

d) streamlines of meridional flow.

Reversals

http://geomag.usgs.gov/intro.php

