Feeding and small-scale feedback in (ultra) low-luminosity AGNs

Keck/UCLA Galactic Center Group

 MGC3115, credit: NASA

Roman Shcherbakov (University of Maryland, Hubble Fellow), Fred Baganoff (MIT), Jimmy Irwin(Alabama), Ka-Wah Wong (Alabama) 290th IAU, Beijing, China 21 Aug 2012

Typical AGN is not active

L_{bol} – total luminosity

L_{Edd} – Eddington luminosity (theoretical maximum AGN luminosity)

Typical AGN has L_{bol}/L_{edd}~10⁻⁵ lower L_{bol} objects may still be missed An AGN shines at Eddington luminosity for only a short time (mergers don't happen all the time)

-8

2.0

Sgr A* has
$$L_{bol}/L_{edd} \sim 10$$

Accretion rate & physics vs state of AGN

No thin disk 🗢 low-luminosity AGN

How does matter get to the BH in LLAGNs?

Accretion from radius of BH gravitational influence (Bondi radius)

Sources with very large R_B (T=0.3-1keV):

Milky Way : M_{BH} =4.3·10⁶ M_{\odot} , d=8.3kpc, R_{B} =2'' Gillessen et al. 2009

NGC3115 : $M_{BH} = 1.5 \cdot 10^9 M_{\odot}$, d=9Mpc, $R_B = 4''$

Kormendy et al. 1996

Chandra X-ray visionary projects (XVP) to directly probe gas near Bondi radius

Ν

3Ms gratings observations of Sgr A* – underway 1Ms observations of NGC 3115 – observations finished

Bondi accretion

Bondi flow is not the whole story

keV⁻¹ 10⁻³

Counts s⁻

×

6

Energy (keV) Baganoff et al. 2003

Density profile is very shallow = small % of material reaches the BH

Supply of gas: feeding by stellar winds Nuclear star clusters produce enough winds to feed the BH Sgr A*: Paumard et al. 2006 Specific mass loss rate $10^4 M_{\odot}$ star cluster, age 6Myr is lower with population age $\dot{f}_g \approx \frac{0.05}{age + 5Mvr}$ $5 \cdot 10^{-4} M_{\odot}/yr$ ejection rate (consistent with directly observed mass loss) BH accretes only $\sim 3.10^{-8} M_{\odot}/yr$ e.g. Jungwiert et al. 2001 Direct correlation with V-band NGC3115*: Kormendy et al. for old population 5.10^{6} M_o star cluster, age¹⁹⁹⁶ Gyr $\dot{M} \approx 3 \cdot 10^{-11} \frac{L_V}{L_{Sun,V}} (M_{Sun} yr^{-1})$ $2 \cdot 10^{-4} M_{\odot}$ /yr ejection rate BH accretion rate $5 \cdot 10^{-5} M_{\odot}/yr$ e.g. Padovani & Matteucchi 1993 if accretes similarly to Sgr A*

BHs can be fed exclusively by stellar winds

Ho 2009

We study the details

A model with feeding and conduction for Sgr A*

Features:

- 1. Known mass/energy supply from observed stars
- 2. Electron heat conduction feedback mechanism
- 3. 1-D dynamical model of gas flow
- 4. Fits X-ray surface brightness profile

Very low accretion rate $\dot{M} \sim 6 \cdot 10^{-8} M_{sun}$ / yr

Caveats:

- 1. Model is too simple: 2D instead of 1D
- 2. Underutilized obs data: could fit spectrum in addition to surface brightness
- 3. More precise emission model is needed: full CIE emissivity (apec)

instead of bremsstrahlung

4. Consider contribution from unresolved point sources

Working to eliminate the caveats

Unresolved point sources vs. gas emission There always are unresolved point sources in nuclei Sgr A* Multi-T emission can be ascribed Absorbed power-law fits the spectrum well, to coronas of active spun-up stars no need for thermal emission 1Ms exposure Sazonov et al. 2012 40ks exposure Baganoff et al. 2003 Nuclei of nearby LLAGNs Can fit nuclear X-rays with power-law, Can fit nuclear X-rays with thermal brems, but we prefer to fit with thermal brems but we prefer to fit with power-law Pellegrini 2005 Soria et al. 2006a

NGC 3115*

Wong et al. 2011

Wong, Shcherbakov, et al. in prep; Shcherbakov, Wong, et al. in prep

1Ms exposure

1. Know the spectra of LMXBs (hard power-law), CV/ABs (soft power-law + thermal). 2. Fit the full spectrum with LMXBs, CV/ABs + hot gas component (apec). $min(\chi^2 / dof) = 4.3$ without gas

A gas model for NGC3115

Adiabatic gas model w/ stellar winds fits outside density/temperature

Conclusions

Details of feeding of low-luminosity AGNs

Observations:

- 1. X-ray spectrum of ambient gas => T_B and n_B at Bondi radius
- 2. But... must separate gas emission from unresolved point sources
- 3. Sub-mm peak from near the BH => T and n at the horizon

Shallow density profile, suppressed accretion

Theory:

- 1. Steady-state model w/ stellar winds feeding reproduces T_B and n_B at R_B
- 2. Small-scale feedback (conduction) lowers the accretion rate =>

consistent T and n at the horizon