

Constraining the Accretion Flow in Sgr A\* by General **Relativistic Dynamical and Polarized Radiative Modeling** Roman Shcherbakov (UMD), Robert Penna (Harvard), Jon McKinney (Stanford) roman@astro.umd.edu 2012, ApJ, 755, 133 Hubble postdoctoral fellow http://astroman.org/



# Sgr A\* - black hole in the center of the Galaxy

Accretion of hot stellar winds  $\rightarrow$  extremely low accretion rate ~10<sup>-8</sup>M<sub>sun</sub>/yr

My talk on Tuesday

#### Radiatively inefficient accretion flow

has hot electrons



Polarized synchrotron emission

# Sgr A\* quiescent spectrum



Electron  $T_{e}$  and magnetic field B increase steeply towards the BH Synchrotron emissivity and peak v rise closer to the BH

Sub-mm synchrotron peak is produced near the event horizon

# **Compilation of mean sub-mm polarized spectrum**



Compilation over 13 yrs of observations □ Shown mean fluxes/polarization fractions Error bars – errors of sample means /or/ systematic errors (if larger)

□ Total flux peaks at ~500GHz Low LP at low frequencies - beam depolarization

**Allows to probe GR effects** 

### Plan:

- Simulate accretion flow dynamics near the BH for a set of spins a\*
- **Construct** a set of models with certain
  - electron temperature  $T_e$ , accretion rate  $M_{dot}$ , viewing angle  $\theta$
- Perform GR polarized radiative transfer and simulate mean spectra 3.
- Find the preferred model parameters

# **3D GRMHD simulations + extensions**

□ start with weak-B torus w/ inner edge at 20M

use quasi-steady late-time accretion flow for radiative transfer: from 14000M to 20000M □ solve for electron temperature profile leaving heating coefficient C – free parameter



Instantaneous and averaged poloidal cuts

### Sample solution for temperatures



Then compare the mean observed and mean simulated spectra: CP, LP, total flux in sub-mm

### **Results: preferred BH and accretion flow parameters**

| Properties of the Best-fit Models with Different Spins |                                   |                                    |                        |                            |                               |                                                         |
|--------------------------------------------------------|-----------------------------------|------------------------------------|------------------------|----------------------------|-------------------------------|---------------------------------------------------------|
| Model                                                  | Inclination Angle, $\theta$ (deg) | Spin Position Angle,<br>P.A. (deg) | Heating<br>Constant, C | Ratio $T_p/T_e$<br>at $6M$ | Electron $T_e$<br>at $6M$ (K) | Accretion Rate<br>$\dot{M} (M_{\odot} \text{ yr}^{-1})$ |
| Spin $a_* = 0$                                         | 42.0                              | 171.0                              | 0.42107                | 15.98                      | $3.343 \times 10^{10}$        | $7.005 \times 10^{-8}$                                  |
| Spin $a_* = 0.5$                                       | 74.5                              | 115.3                              | 0.37012                | 20.14                      | $3.087 \times 10^{10}$        | $4.594 \times 10^{-8}$                                  |
| Spin $a_* = 0.7$                                       | 64.5                              | 84.7                               | 0.37239                | 20.16                      | $3.415 \times 10^{10}$        | $2.694 \times 10^{-8}$                                  |
| Spin $a_* = 0.9$                                       | 53.5                              | 123.4                              | 0.39849                | 18.16                      | $4.055 \times 10^{10}$        | $1.402 \times 10^{-8}$                                  |
| Spin $a_* = 0.98$                                      | 57.2                              | 120.3                              | 0.41343                | 17.00                      | $4.190 \times 10^{10}$        | $1.553 \times 10^{-8}$                                  |
| Spin $a_* = 0.5$ short period 1                        | 70.0                              | 79.3                               | 0.38934                | 18.50                      | $3.334 \times 10^{10}$        | $3.513 \times 10^{-8}$                                  |
| Spin $a_* = 0.5$ short period 2                        | 72.8                              | 113.1                              | 0.40507                | 17.31                      | $3.541 \times 10^{10}$        | $3.452 \times 10^{-8}$                                  |
| Spin $a_* = 0.5$ short period 3                        | 73.4                              | 57.4                               | 0.37302                | 19.87                      | $3.125 \times 10^{10}$        | $3.897 \times 10^{-8}$                                  |
| Spin $a_* = 0.5$ short period 4                        | 74.4                              | 115.4                              | 0.36147                | 20.95                      | $2.978 \times 10^{10}$        | $4.508 \times 10^{-8}$                                  |
| Spin $a_* = 0.5$ short period 5                        | 71.9                              | 95.7                               | 0.37420                | 19.79                      | $3.137 \times 10^{10}$        | $5.334 \times 10^{-8}$                                  |
| Spin $a_* = 0.5$ short period 6                        | 76.4                              | 116.7                              | 0.38853                | 18.59                      | $3.320\times10^{10}$          | $6.080 \times 10^{-8}$                                  |
| Spin $a_* = 0$ fast light                              | 41.4                              | 187.5                              | 0.41929                | 16.09                      | $3.322 \times 10^{10}$        | $7.044 \times 10^{-8}$                                  |
| Spin $a_* = 0.5$ fast light                            | 72.7                              | 105.9                              | 0.39804                | 17.83                      | $3.447 \times 10^{10}$        | $3.957 \times 10^{-8}$                                  |
| Spin $a_* = 0.7$ fast light                            | 59.4                              | 131.8                              | 0.35708                | 21.62                      | $3.204 \times 10^{10}$        | $2.966 \times 10^{-8}$                                  |
| Spin $a_* = 0.9$ fast light                            | 53.3                              | 123.3                              | 0.40215                | 17.86                      | $4.116 \times 10^{10}$        | $1.340 \times 10^{-8}$                                  |
| Spin $a_* = 0.98$ fast light                           | 57.7                              | 119.6                              | 0.41720                | 16.73                      | $4.246 \times 10^{10}$        | $1.515 \times 10^{-8}$                                  |



Spectra for best models with each spin

#### Producing polarized images/movies



 $\Box$  Reduced  $\chi^2$ =2-5 for best models with each spin  $\Box$  Best reduced  $\chi^2$  changes by ~1 between realizations => cannot choose a best spin

 $\Box$  Electron temperature at r=6r<sub>a</sub> for best-fitting models: T<sub>e</sub>=(3.0-4.2)·10<sup>10</sup>K  $\Box$  Accretion rate  $M_{dot} = (1.5 - 7.0)^{-1} 10^{-8} M_{sun} / yr$ , higher spin => lower accretion rate □ Spin inclination angle 40-75°, neither face-on nor edge-on models fit • "Fast light" approximation (radiative transfer on stationary snapshots) leads to significant variations in the best-fitting parameters

#### Dozens of caveats

□ Is numerical resolution sufficient? □ Did simulation reach the steady state? Does red noise change time variability? □ Are plasma effects important for dynamics (conduction)? □ Are plasma effects important for electron distribution? □ How are the electrons heated?



The results should be taken as order of magnitude estimates □No obvious discrimination between models

How circular polarization is produced in best-fitting model w/ spin 0.5



Emissivity in V produces some CP(~+0.5%), while stronger negative V is produced via "rotation-induced Faraday conversion" Emission region size is consistent with observations □ "BH shadow" is observable at 230GHz

(at current accretion rate)

- □ Typical linearly polarized intensity is 15%, which becomes 6% in total LP flux
- □ Typical circularly polarized intensity is 10%, which becomes 1% in total CP flux