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Abstract

Sgr A* in our Galactic Center is the closest supermassive black hole (SMBH) with the

largest event horizon angular size. Most other SMBHs are likely in the same dormant

low-luminosity accretion state as Sgr A*. Thus, the important physical effects in lives

of BHs can be best observed and studied in our Galactic Center. One of these effects

is electron heat conduction. Conduction may be the main reason why Sgr A* is so

dramatically underluminous: it transfers heat outwards from the inner flow and unbinds

the outer flow, quenching the accretion. In Chapter 3 I build a realistic model of accretion

with conduction, which incorporates feeding by stellar winds. In a model with accretion

rate < 1% of the naive Bondi estimate I achieve agreement of the X-ray surface brightness

profile and Faraday rotation measure to observations. An earlier model proposed in

Chapter 2 with adiabatic accretion of turbulent magnetized medium cannot be tweaked to

match the observations. Its accretion rate appears too large, so turbulent magnetic field

cannot stop gas from falling in.

Low accretion rate leads to a peculiar radiation pattern from near the BH: cyclo-

synchrotron polarized radiation is observed in radio/sub-mm. Since it comes from several

Schwarzschild radii, the BH spin can be determined, when we overcome all modeling

challenges. I fit the average observed radiation spectrum with a theoretical spectrum,

which is computed by radiative transfer over a simulation-based model. Relevant plasma

effects responsible for the observed polarization state are accurately computed for thermal
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plasma in Chapter 4. The prescription of how to perform the correct general relativistic

polarized radiative transfer is elaborated in Chapter 5. Application of this technique to

three-dimensional general relativistic magneto hydrodynamic numerical simulations is

reported in Chapter 6. The main results of analysis are that the spin inclination angle is

estimated to lie within a narrow range θest = 50◦ − 59◦, and most probable value of BH

spin is a∗ = 0.9.

I believe the researched topics will play a central role in future modeling of typical

SMBH accretion and will lead to effective ways to determine the spins of these starving

eaters. Computations of plasma effects reported here will also find applications when

comparing models of jets to observations.
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Chapter 1

Introduction

1.1 Place of Sgr A* in the Cosmos

1.1.1 Formation Scenarios of Seed Black Holes

Supermassive black holes (SMBH) are the most extreme objects found in the Universe.

They possess an event horizon, from underneath which nothing can escape. The horizon

is often larger in size than the radius of Earth’s orbit around the Sun. The centers of

Galaxies are proven to host these supermassive objects (e.g. Begelman & Rees 2010). How

did they get there and why are they so big?

The life of a SMBH starts with its birth. Several mechanisms were proposed for that

without definite conclusions about how SMBHs are actually born. Figure 1.1 reviews a list

of possible ways. SMBHs may start their lives as relatively tiny objects formed via the

collapse of Population III stars that are dominated by radiation pressure. These stars may

develop pair instability, runaway generation of electron-positron pairs, and collapse into a
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∼ 100M⊙ BH (e.g. Bond et al. 1984; Fryer et al. 2001). Here M⊙ = 2 · 1033g is a solar

mass.

Another mechanism of seed BH formation is through the collapse of the nucleus of a

stellar cluster (Begelman & Rees, 1978; Miller & Hamilton, 2002; Devecchi & Volonteri,

2009). Compact protogalaxies in the early Universe can undergo massive star-formation

episodes in their centers. The newly formed stars start a chain of runaway star-star

collisions, which culminate with the formation of a huge several thousand M⊙ star. This

star collapses into ∼ 1000− 2000M⊙ seed BH.

The initial BHs do not have to be small. A different mechanism was proposed, which

can lead to formation of BHs with masses up to 104− 106M⊙. The primordial high-density

clumps of gas can effectively lose angular momentum and quickly collapse as a whole

(Haehnelt & Rees, 1993; Loeb & Rasio, 1994; Eisenstein & Loeb, 1995; Begelman et al.,

2006). Such a process also requires low metallicity of the early Universe to avoid active

cooling and fragmentation of the cloud into small stars.

1.1.2 Mergers and Accretion over Hubble Time

Let us examine the destiny of seed BHs. Once they are formed, BHs may either

already be at the centers of protogalaxies or may drift to the centers due to dynamical

friction (Chandrasekhar, 1943). However, the life of a BH is not so simple. Over the age

of the Universe galaxies undergo substantial interactions with their neighbors. Galaxy

merger (Toomre & Toomre, 1972; Toomre, 1977; Barnes & Hernquist, 1992; Barnes,

1998; Schweizer, 1998; Hopkins et al., 2006) involves coalescence of two central BHs (e.g.

Volonteri et al. 2003). The resultant bigger BH gets kicked from the center (Buonanno et
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Figure 1.1.— Formation scenario of seed BHs. Adopted from Rees (1984).
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al., 2007; Campanelli et al., 2007; Gonzalez et al., 2007), but is likely to stay bound and

sink back to the center, as the recoil velocity is normally smaller than the galaxy velocity

dispersion σ. Thus, SMBHs grow through a series of coalescence events.

Another frequent activity of BHs is accretion. Substantial amounts of gas can cool

and fall onto the BH during and after the galaxy merger phase (e.g. Hopkins et al. 2006).

At this time the accretion flow often radiates at high luminosity or shoots a powerful

bright jet, so that the BH and the accretion flow are classified as an active galactic nucleus

(AGN) (e.g. Begelman & Rees 2010). The BH mass grows through accretion. Owing

to coalescence events and accretion supermassive BHs may end up having masses of

109 − 1010M⊙ at the present epoch.

However, a survey of nearby galaxies shows that they are generally not very active

(see Ho 2008 for the review). The average galaxy is not an active AGN. A typically

short period of high luminosity (Hopkins et al., 2005) appears to be followed by a longer

phase as a low-luminosity AGN (LLAGN). These are dormant BHs in galactic centers,

accreting relatively little gas. Thus, to study a typical SMBH, we need to study it in a

low-luminosity phase. Coincidentally, we have such a dormant accretor in the center of our

own Galaxy, the Milky Way. This BH is called Sgr A*. Due to its small distance compared

to the distances to other galaxies, Sgr A* is relatively easy to study.

1.1.3 Recent and Present-day Activity

Despite the advantage of its nearby location, we have to deal with the disadvantages of

low luminosity and high obscuration, when studying Sgr A*. At present, radiation from it

is barely detectable. Only in the early 1970-s was an unusual radio source observed in the
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very center of our Galaxy (Balick & Brown, 1974). Yet, it is non-trivial to unambiguously

associate the observed radio emission with some process near the BH. The convincing

proof that our galactic center contains a SMBH came much later from observations of

stellar orbits (Schödel et al., 2002; Ghez et al., 2003).

Figure 1.2.— Orbits of stars around Sgr A* BH. Image credit: Keck/UCLA Galactic Center

Group.

Some stars were seen blazing at 5000km s−1 around the center (see Figure 1.2),

whereas the source of radio emission stays in one location to a high precision (Reid et al.,
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2008), which proves the object is very massive. The mass of Sgr A* appears to be around

4.3 · 106M⊙ (Genzel et al., 1997; Ghez et al., 2003, 2008; Gillessen et al., 2009). Since

this estimate became available, theorists were wondering, why the BH is so dramatically

underluminous with bolometric luminosity less than 1037erg s−1 (e. g. Narayan et al.

1998). A large set of possible explanations was proposed. Some of them are elaborated

upon within this thesis. When the density of matter was estimated near Sgr A* (Quataert

& Gruzinov, 2000b; Marrone et al., 2007), it became apparent that for a typical accretion

scenario the luminosity would be much greater, were the central object to have a solid

surface outside of the event horizon (Broderick & Narayan, 2006; Broderick et al., 2009b).

This is another proof that a SMBH is present in the center of our Galaxy.

There is some evidence that Sgr A* was not always very underluminous. A fluorescent

iron line was discovered to emanate from Sgr B (Koyama et al., 1996). It is most naturally

explained by irradiation from Sgr A* some 300 years ago. Another tentative evidence for

past bright states of the SMBH in the Galactic center is a jet feature seen by Chandra

(see Figure 1.4) (Muno et al., 2008). It points exactly in the direction of Sgr A*. A sky

projection of the jet feature is perpendicular to the Galactic plane. One more potential

evidence of a past jet has recently been discovered. An extended excess of radiation was

seen by WMAP and Fermi from near the center of the Galaxy (Su et al., 2010). A possible

explanation for this excess is a transient jet (Guo & Mathews, 2011) that radiated about

1057−58erg. Other galaxies sometimes also have bubbles around their centers (Allen et al.,

2006). The production of these bubbles is often ascribed to outflows and jets. Thus, it

would not be surprising, if Sgr A* had a jet in the recent past.
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Figure 1.3.— X-ray view of 10 pc region centered on Sgr A*. Different bands of Chandra

are color-coded as follows: red corresponds to 2 − 4 keV band, green — 4 − 6 keV band,

blue — 6 − 8 keV. Thus, blue dots represent hard point sources, whereas red shows soft

emission from diffuse gas. Image credits: NASA/CXC/MIT/F.K. Baganoff et al.
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Figure 1.4.— X-ray close-up on Sgr A region (Muno et al., 2008). A jet feature is clearly

visible at PA = 120◦ East of North.
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1.2 Summary of Sgr A* Observations

Figure 1.5.— Compilation of Sgr A* spectrum from radio to X-rays adopted from Yuan et

al. (2004). Curves represent certain radiation models in Yuan et al. (2004). Two different

levels of observed X-rays correspond to a quiescent state and a flaring state.

A typical spectrum of Sgr A* is depicted on Figure 1.5. Emission occurs over a

broad frequency range from radio to X-rays with a peak in sub-mm. Let me review the

particulars of radiation in different bands.

1.2.1 Sub-mm and Radio Observations

Since the discovery of Sgr A* in radio (Balick & Brown, 1974), various radio

and sub-mm observational campaigns were conducted over the subsequent three and
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a half decades. Various telescopes and arrays have observed Sgr A*: Berkeley Illinois

Maryland Association telescope (BIMA), Combined Array for Research in Millimeter-wave

Astronomy (CARMA), Caltech Submillimeter Observatory (CSO), Global Millimeter

Very Long Baseline Interferometry (VLBI) Array (GMVA), Institute of Radioastronomy

in Millimeter wavelengths telescope (IRAM), James Clerk Maxwell Telescope (JCMT),

Max Planck Institute of Radioastrophysics telescope (MPIfR), Nobeyama millimeter array

(NMA), Nobeyama single-dish telescope, Owens Valley Radio Observatory (OVRO),

Submillimeter Array (SMA), Very Large Array (VLA), Very Large Baseline Array (VLBA).

Future telescopes include Atacama Large Millimeter/submillimeter Array (ALMA) and

Expanded VLA (EVLA). There is ongoing work to add more VLBI stations in exotic

locations to probe new baselines with distinct orientations (Fish et al., 2009).

Reliable radio and sub-mm data were accumulated over decades of frequent monitoring.

These data showed variability at each frequency up to a factor of 2 − 3, but never more

than a factor of ∼ 5. Whereas radio emission in AGNs and LLAGNs is thought to be

typically produced by a jet (see e.g. Blandford & Konigl 1979; Falcke & Markoff 2000

for models), only indirect evidence of jets/outflows is present for Sgr A*. In addition to

evidence for past activity of Sgr A*, some current observations suggest extended structure

of radio and sub-mm emission. A time lag was observed between the emission at 43 GHz

and 22 GHz with emission at higher frequency coming first (Yusef-Zadeh et al., 2008).

This is the signature of the expansion or the outflow. Second, the observed correlated

fluxes are inconsistent between different baselines. VLBI correlated flux at 230 GHz for

Hawaii-Arizona baseline (Fish et al., 2011) is substantially smaller than 60 m baseline

flux. The discrepancy is most likely due to a structure of size 10− 105rg. The mysterious

discrepancy of mean levels and variability behavior of VLA and VLBA observations at
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43 GHz (Yusef-Zadeh et al., 2009) perfectly conforms to the extended structure idea.

Despite these complications, we mostly discuss accretion models without jets in what

follows.

Since Sgr A* radio/sub-mm variability levels are small, it makes sense to define

the mean spectrum and model it. The detailed definition of mean observed spectrum is

deferred till Chapter 6, while here I discuss its general shape. The average Sgr A* spectrum

is consistent with self-absorbed cyclo-synchrotron radiation (e.g. Rybicki & Lightman

1979). Flux grows approximately as a power-law till the peak at about 500 GHz. Flux

decreases quickly with frequency ν for ν > 500 GHz, yet the rate of this decrease cannot

be quantified due to an absence of sub-mm observations above 857 GHz. No noticeable

flattening of radio spectrum at ν ≤ 43 GHz can be identified.

In addition to the total flux, modern radio/sub-mm telescopes can observe the

polarization state of the radiation. Four Stokes parameters I, Q, U , and V integrated over

the image or a set of total flux Fν , linear polarization (LP) fraction, circular polarization

(CP) fraction, and electric vector position angle EVPA fully describe the polarization

state. If one can observe all Stokes parameters, then the amount of information from a

given exposure increases fourfold. Unfortunately, the polarization fractions are much below

100% and are hard to observe (Marrone et al. 2007, Munoz et al.(2011) in prep). Only

incomplete polarization data are available. Nevertheless, as I will show, these data are

enough to constrain the BH spin, its orientation, and flow properties.

Extra information can be extracted from variable lightcurves. In general, lightcurve

variability is ascribed to magneto hydrodynamic turbulence (Chan et al., 2009; Dexter

et al., 2009), which is associated with variability of density, magnetic field, and particle
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energy. The probability density function (PDF) can be constructed to isolate particular

states (Herrnstein et al. 2004; this work, Chapter 6). A Fourier transform at a single

frequency can be computed to search for typical variability period, the same search can

be done even more effectively with the help of the structure function (Yusef-Zadeh et al.,

2011). Even though characteristic periods of ∼ 20 min have been seen (Genzel et al., 2003;

Yusef-Zadeh et al., 2011), the evidence for quasi-periodic oscillations (QPOs) in Sgr A*

remain elusive.

VLBI observations of BH Shadow

A distinct type of sub-mm observations was recently conducted for the first time

for Sgr A*. The extreme angular resolution of VLBI technique at 230 GHz allowed the

observers to resolve the material plunging onto the BH from within several rg = GM/c2

(Doeleman et al., 2008). Here G is a gravitational constant, M is the BH mass, and c is

speed of light. The size and shape of the source image are distinct for different accretion

profiles, BH spins, and spin inclination angles. This method offers a way to directly

observe the predicted BH shadow and to constrain the flow properties. At present, a

simple spherical accretion model can be ruled out, since its emission region would be

too large. Models based on three-dimensional (3D) general relativistic MHD (GRMHD)

simulations with spin a = 0.9 generally predict the correct image size (Moscibrodzka et

al., 2009; Dexter et al., 2010; Shcherbakov et al., 2010). Finding correlated fluxes at

lower frequencies would provide more observational constraints, but, unfortunately, this

technique cannot be reliably extended to low ν because of interstellar scattering (e.g. Shen

et al. 2005).



Chapter 1: Introduction 13

1.2.2 Infrared Observations

Substantial levels of near-infrared (NIR) emission were recently detected from Sgr

A* by Hubble (Yusef-Zadeh et al., 2009), Keck with adaptive optics (Do et al., 2009),

and Very Large Telescope (VLT) (Dodds-Eden et al., 2011). NIR observations are quite

hard due to uncertain dust obscuration and frequent source confusion in Sgr A* field.

Variability in NIR is more substantial than in radio and sub-mm, routinely reaching 10

times the median level. When flux is substantially above the median, Sgr A* enters the

so-called ”flaring state”. Synchrotron and synchrotron self-Compton (SSC) mechanisms

are proposed (e.g. Markoff et al. 2001; Eckart et al. 2006a; Dodds-Eden et al. 2010) to

explain the flaring state. In addition to studies of flares, NIR variability of Sgr A* was

quantified with probability density function, which resembles a log-normal distribution at

high fluxes (Dodds-Eden et al., 2011). Search for periodicity showed that variations are

consistent with red noise (Do et al., 2009) with no statistically significant periodicity.

1.2.3 X-ray Observations

The amazing spatial resolution of Chandra allowed researchers to study the center of

our Galaxy in unprecedented detail. Sgr A* region is very rich. There are several types

of sources within 0.2 pc from the BH: a pulsar wind nebula, an accreting variable binary

system, and lots of hot gas as can be seen on Figure 1.6 (Muno et al., 2008, 2009). To

isolate the emission of diffuse hot gas, one needs to subtract the point sources, which the

field is quite contaminated with. This exercise is doable for Sgr A* field (see Chapter 3),

since we can resolve all point sources down to a very low luminosity. Then one can quantify

the emission from diffuse gas and say how much matter is available for a BH to swallow.
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Such an exercise, which gives the necessary input to construct an accretion model, has

been for Sgr A* in the present work. Unfortunately, it is not easy to reliably isolate the

contribution from diffuse gas in the nuclei of other nearby galaxies such as Andromeda

(Garcia et al., 2005) or nearby LLAGNs (Pellegrini, 2005; Soria et al., 2006a,b).

Figure 1.6.— Various sources of X-ray emission from near Sgr A*. Image credits:

NASA/CXC/MIT/F.K. Baganoff et al.

Normally, the X-ray flux from Sgr A* is dominated by diffuse gas and is constant.

However, flares were observed to reach 10 − 100 times the median flux from several

pixels around Sgr A* position (Baganoff et al., 2001). Synchrotron and SSC models were

proposed to simultaneously fit NIR and X-ray observations of flares. Both mechanisms

involve acceleration of electrons to ultrarelativistic energies.
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1.3 Summary of Sgr A* Modeling

1.3.1 General Flow Structure

Radiation from Sgr A*, which we see with telescopes, is produced in hot gas/plasma.

The extreme forces of the BH make the gas move. Motion towards the BH inevitably leads

to compression and heating of plasma and to production of a unique emission pattern.

Thus, to understand BHs, researchers study the motion of gas around them. The

simplest type of gas motion is spherically symmetric inflow as described by the Bondi

solution (Bondi, 1952). It predicts a certain accretion rate for a given gas temperature and

density outside the Bondi radius rB, which is the radius of BH gravitational influence as

compared to gas pressure influence. Simple Bondi flow is not very realistic. Virtually all

hot astrophysical fluids have embedded magnetic field. A natural extension of the Bondi

flow, spherical accretion with random magnetic field, is discussed in Chapter 2.

However, the spherical inflow itself is not realistic (Beskin & Karpov, 2005). As the

gas is dragged from about 106rg to 1rg, even a tiny amount of net angular momentum

would lead to circularization of the flow at a radius ≫ 1rg. Simulations of Sgr A*

region by Cuadra et al. (2008) suggested circularization radius of ∼ 3 · 103rg. When

the flow becomes rotationally supported, even small initial magnetic field gets amplified

by magnetorotational instability (MRI) (Balbus & Hawley, 1991) and develops MHD

turbulence (Balbus & Hawley, 1998; Hawley & Krolik, 2001). This turbulence helps

to transport the angular momentum outside and the matter towards the BH. Various

rotationally supported models were invented to quantify this process. Preserving the

assumption of energy conservation in the flow, Narayan & Yi (1995) came up with the
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advection-dominated accretion flow (ADAF). Being quite an advanced model already,

ADAF can still be ruled out for Sgr A*. Energy conservation ensures the steep density

profile ρ ∝ r−1.5. Computing such a flow structure from known density and temperature

at Bondi radius, one stumbles into problems: overproduction of Faraday rotation measure

(Quataert & Gruzinov, 2000b) or/and the overproduction of sub-mm and X-ray emission

from the inner flow (Shcherbakov & Baganoff, 2010).

A number of proposed flow solutions depart from adiabaticity and energy conservation.

The generic type of energy exchange between the inner and the outer flow helps to reconcile

theory with observations. As Blandford & Begelman (1999) put it: ”the binding energy

of a gram of gas at a few rg drives off 100 kg of gas from 105rg.” Blandford & Begelman

(1999) proposed the name adiabatic inflow-outflow solutions (ADIOS), yet not quantifying

the energy exchange mechanism. A year later convection was found to be a suitable

mechanism for tapping into the energy of the inner flow. Thus, convection-dominated

accretion flow (CDAF) (Narayan et al., 2000; Quataert & Gruzinov, 2000a) was proposed.

As I will show in Chapter 3 even stronger effect, conduction, is at play in our Galactic

Center. The model will also incorporate Sgr A* feeding by stellar winds. See Cuadra et al.

(2008) and Figure 1.7 for the discussion of feeding. Chapter 6 will discuss the steady-state

model based on 3D GRMHD simulations.

As noted above, the observed Sgr A* lightcurves show variability in all wavelengths,

which cannot be addressed within a steady-state model. A turbulent flow needs to be

properly quantified. The best researchers can do now is to conduct direct numerical

simulations (DNS). There is no complete theory of the statistical properties of turbulence

(Leslie, 1973), so analytical approaches are not reliable. Simulations are hard to perform

and have various problems with inclusion of relevant physical effects, correctness of
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Figure 1.7.— Surface density of gas near Sgr A* Cuadra et al. (2008) as simulated to be

ejected by stellar winds. The properties of wind-producing stars can be identified and then

the dynamics of gas can be simulated with smoothed-particle hydrodynamics (SPH).
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implementation, and convergence (Hawley et al., 2011). Simulations large numbers of

CPU-hours to run. Yet, it is essential to do quantitatively correct simulations to accurately

estimate the properties of the BH and the accretion flow. It is possible to make order of

magnitude estimates for BH mass, electron temperature, and accretion rate within simple

models. However, order of magnitude estimates of BH spin and inclination angle are

meaningless since they would cover the entire ranges of these quantities.

1.3.2 Collisionless Effects

The plasma in the direct vicinity of Sgr A* is one of the hardest to model environments

in the Universe. Besides feeling the extreme gravitational pull of the BH, the gas there is

collisionless with collisional mean free path much larger than the distance from the BH.

In addition, electrons appear to be transrelativistic with gamma-factors on the order of

several: γ ∼ 2− 10.

The main collisionless effect in the flow is heat conduction. Electrons do not feel the

resistance of ions and can travel effectively through tangled magnetic fields (Narayan &

Medvedev, 2001), which leads to effective energy exchange between the inner and the outer

flow, so that the flow structure changes. I discuss this effect in Chapter 3, but since I do

not rigorously determine the conduction strength, the results of that chapter should not

be considered as final. When the flow structure is determined, the radiation is still not:

one needs to know the typical energy and distribution of the emitting species, electrons.

Energy dissipation is one of the main mechanisms for electron heating, but not much

is known about it. Heating by Coulomb collisions is weak near Sgr A* (Narayan et al.,

1998), but heating by collective effects (Begelman & Chiueh, 1988; Quataert, 1998) may
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be more substantial. Promising subfields of gyrokinetics (see (Howes et al., 2006) for a

review) and particle-in-cell (PIC) simulations (e.g. Buneman 1993; Sironi & Spitkovsky

2009) may answer the question of electron heating in the future. Chapter 6 adopts thermal

energy distribution of electrons and leaves the heating rate as a free parameter, whereas

the chapter Chapter 5 discusses some implications of non-thermal electron distributions.

1.3.3 Emissivity and Radiative Transfer

Having discussed observations of Sgr A* and the dynamical models, let us briefly

review the link between the two — the radiative transfer. Unlike the problems in dynamical

modeling, radiative modeling of the SMBH in Galactic Center is quite easy. The flow onto

the BH is truly radiatively inefficient (e.g. Narayan et al. 1998; Sharma et al. 2007a).

Only a small fraction of total electron energy gets radiated, so that electrons do not lose

their energy. This fact allows researchers to first do the dynamical modeling of the flow

and then compute radiation on top of the resultant model. The feedback of radiation on

dynamics is negligible.

Given a dynamical model, we need to use the right methods to compute the radiation.

We should be especially careful when radiation is coming from near the BH. In this case

light travels along null geodesics and the plane of linear polarization rotates. Another

concern is that electrons are typically modeled (Sharma et al., 2007a; Dexter et al., 2010;

Broderick et al., 2010; Huang et al., 2009a) to have γ ∼ 2 − 10, or temperatures just

above the electron rest mass. In this transrelativistic regime LP and CP emissivities,

Faraday rotation and Faraday conversion effects all have the same order of magnitude,

which complicates the calculations. Despite complications, a precise recipe can be given for
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general relativistic polarized radiative transfer in transrelativistic plasmas. I summarize

the formalism in Chapter 5. Precise polarized radiative transfer requires correct Faraday

rotation and Faraday conversion coefficients, which are accurately computed for the first

time in this thesis. The technique and the results are elaborated upon in Chapter 4 for

thermal particle distributions. Non-thermal particle distributions are considered in ongoing

work (Huang, Shcherbakov 2011, in prep). The application of radiative transfer for Sgr A*

is described in Chapter 6.

1.4 Thesis Outline

Despite all the aforementioned complications, this thesis leads to some definite

conclusions about the gas and the BH in the Galactic Center. I also provide some pieces

of original plasma physics research, e.g. lay the foundation of precise general relativistic

polarized radiative transfer in transrelativistic plasmas.

Chapter 2: Spherically Symmetric Accretion Flows: Minimal Model with

MHD Turbulence. This chapter considers spherical Bondi accretion with random

magnetic field. Magnetic field, if not dissipated, could effectively stop the accretion

(Shvartsman, 1971). However, the accretion rate is found to drop by only a factor of 2− 5

times compared to the Bondi rate, if realistic turbulence dissipation rates are taken from

simulations of hydro/MHD turbulence. The proposed model cannot provide an explanation

for the observed low accretion rate onto Sgr A*.

Chapter 3: Inflow-Outflow Model with Conduction and Self-consistent Feeding

for Sgr A*. An elaborate model of realistic accretion onto our Galactic Center is

devised. We incorporate feeding from stellar winds averaged over the actual massive
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stars in Sgr A* vicinity. Then we compute a radial model with realistic unsaturated

conduction and compare bremsstrahlung X-ray surface brightness profile to that found in

1Ms quiescent Chandra observations. We find excellent agreement for an accretion rate

Ṁ = 6 ·10−8M⊙year
−1 and a point source with luminosity L ≈ 4 ·1032erg s−1. The revealed

point source likely corresponds to synchrotron self-Compton emission in quiescence.

Chapter 4: Propagation Effects in Magnetized Transrelativistic Plasmas.

This chapter fixes conceptual and arithmetic errors (e.g. Melrose 1997c) and eliminates

approximations (e.g. Ballantyne et al. 2007) in previous calculations of Faraday rotation

and conversion measures for a thermal particle distribution. Accurate fitting formulae

and analytic expansions are computed for Faraday rotation and conversion. The Faraday

conversion coefficient is found to peak at a temperature of several electron masses

kBTe ∼ 3 − 10mec
2, instead of dramatically increasing with Te. Here kB is Boltzmann

constant and me is the electron mass. The Faraday rotation coefficient is found to decrease

more than thought before (Ballantyne et al., 2007) in the intermediate regime Te ∼ me.

This calculation is essential to properly treat linear and circular polarization in hot

accretion flows. Work is now underway (Huang, Shcherbakov, 2011, in prep.) to compute

Faraday rotation and conversion for arbitrary non-thermal particle distributions.

Chapter 5: General Relativistic Polarized Radiative Transfer: Building a

Dynamics-Observations Interface. General relativistic polarized radiative transfer is a

necessary tool to convert any reasonable accretion model in the Kerr metric into simulated

flux, linear and circular polarization fractions, and electric vector position angle. We

compile a step-by-step guide for carrying out such calculations. An original fast method

for computing cyclo-synchrotron emissivities, Faraday rotation and conversion is proposed.

I developed a numerical C++ code based on the proposed method and employed it in
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Shcherbakov et al. (2010). As polarized observations of cyclo-synchrotron emitting sources

(LLAGNs, jets) become increasingly common in radio and sub-mm, the technique will be

increasingly crucial in modeling these sources, in particular, estimating BH spin.

Chapter 6: Constraining the Accretion Flow in Sgr A* by General Relativistic

Dynamical and Polarized Radiative Modeling. We compile from the literature the

mean spectrum of Sgr A* and model it. We perform 3D GRMHD simulations, conduct GR

polarized radiative transfer calculations, and explore the 3.5D parameter space of electron

temperature, accretion rate, inclination angle, and BH spin. We fit the flux spectrum

within 86-850 GHz and known linear and circular polarization fractions within the same

band. Performing χ2 analysis of fits, we find that the best-fitting model corresponds to

a dimensionless BH spin a∗ = 0.9 with χ2 = 4.05. For this solution, the 90% confidence

intervals are θ = 53◦ ± 3◦, PA = 121◦ ± 20◦, Ṁ = (1.09 ± 0.13) × 10−8M⊙year
−1,

Te = (4.62± 0.56) · 1010 K at 6M for inclination angle, spin position angle, accretion rate,

and electron temperature, respectively. The conservative estimates over two models with

spin a∗ = 0.9 are θ = 50◦ − 59◦, PA = 101◦ − 143◦, Ṁ = (0.9 − 1.7) × 10−8M⊙year
−1,

Te = (2.7 − 5.2) · 1010 K at 6M. The computed constraints on the inclination angle are

narrower than reported by other groups. Images of the accretion flow close to the BH are

shown in Fig. 6.15. We estimate the power-law index β = 0.8− 0.9 for the density profile

n ∼ r−β between the Bondi radius and the inner flow. This index lies in between β = 1.5

for advection-dominated flow and β = 0.5 for convection-dominated flow. The PA of spin

projection coincides with that of the tentative X-ray jet PA = 120◦.



Chapter 2

Spherically Symmetric Accretion

Flows: Minimal Model with MHD

Turbulence

Abstract

The first spherical accretion model was developed 55 years ago, but the theory is

yet far from being complete. The real accretion flow was found to be time-dependent

and turbulent. This chapter presents the minimal MHD spherical accretion model that

separately deals with turbulence. Treatment of turbulence is based on simulations of several

regimes of collisional MHD. The effects of freezing-in amplification, dissipation, dynamo

action, isotropization, and constant magnetic helicity are self-consistently included. The

assumptions of equipartition and magnetic field isotropy are released. Correct dynamics
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of magnetized flow is calculated. Diffusion, convection, and radiation are not accounted

for. Two different types of Radiatively Inefficient accretion flows are found: a transonic

non-rotating flow (I), a flow with effective transport of angular momentum outward (II).

Non-rotating flow has an accretion rate several times smaller than Bondi rate, because

turbulence inhibits accretion. Flow with angular momentum transport has accretion rate

about 10-100 times smaller than Bondi rate. The effects of highly helical turbulence,

states of outer magnetization, and different equations of state are discussed. The flows

were found to be convectively stable on average, despite gas entropy increases inward.

The proposed model has a small number of free parameters and the following attractive

property. Inner density in the non-rotating magnetized flow was found to be several times

lower than density in a non-magnetized accretion. Still several times lower density is

required to explain the observed low IR luminosity and low Faraday rotation measure of

accretion onto Sgr A*.

2.1 Introduction

Dynamics of magnetized accretion flows is a major topic of astrophysical research.

The problem can be solved with two different approaches: numerical and analytical. Each

of them has specific difficulties, so these methods can be applied together for a better

result.

Realistic numerical simulations require a lot of computational time to model even

the isotropic case (Lazarian, 2006). Convergence of properties of the isotropic turbulence

is reached only when computational domain has more than 1024 cells in each dimension

(Ladeinde & Gaitonde, 2004; Biskamp, 2003). Non-isotropic simulations of this size were
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not performed. It is also very difficult to model the system with large range of scales. The

system then possesses vastly different timescales. Existing simulations of accretion flows

are either axisymmetric (McKinney, 2006b) or consider a rather small domain close to the

object (Hawley & Balbus, 2002; Igumenshchev, 2006). In addition, simulations should be

run for sufficiently long time or several runs should be made to obtain average quantities,

e.g. accretion rate, power of emitted radiation.

Analytical models do not suffer from a need to average, if they are based on averaged

quantities. However, to build a reasonable model is itself difficult. No unified method

exists to combine insights in physics and mathematics into a perfect analytical model.

That is why the zoo of approximations of astrophysical flows is so huge.

In particular, many analytical treatments were devised for accretion: spherically

symmetric treatment (Bondi, 1952; Meszaros, 1975; Coker & Melia, 2000; Beskin &

Karpov, 2005), standard disk (Shakura & Sunyaev, 1973), Advection-Dominated Accretion

Flow (ADAF) (Narayan & Yi, 1995) with its variation Hot Luminous Accretion Flow

(Yuan, 2001), Adiabatic Inflow-Outflow Solutions (ADIOS) (Blandford & Begelman,

1999), Convection Dominated Accretion Flow (CDAF) (Narayan et al., 2000; Quataert &

Gruzinov, 2000a), Jet-ADAF (Yuan et al., 2002). They are aimed to describe essentially

the same process: axisymmetric plasma inflow onto a compact source. Some models

include the effects the others miss. Energy transport in CDAF, outflows in ADIOS are the

examples. Some effects are not treated properly in any approximation.

Magnetic field is a main source of uncertainty and mistakes in theory of accretion flows.

Two assumptions are usually posed to incorporate it into the model. Firstly, magnetic field

is considered to be isotropic (Coker & Melia, 2000; Narayan & Yi, 1995). Then magnetic
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pressure and magnetic energy density may be put (Narayan & Yi, 1995) into the dynamical

equations. Secondly, the ratio of magnetic field energy density to gas thermal energy

density is set to constant. This is called thermal equipartition assumption. These two

ideas are at least unproven or may even not work. Magnetic field is predominantly radial

in spherical inflow (Shvartsman, 1971) because of freezing-in condition and predominantly

toroidal in disk (Hawley & Balbus, 2002) because of magnetorotational instability.

In a good model direction and strength of the magnetic field should be determined

self-consistently. Non-isotropy of magnetic field requires special dynamics. Dynamical

equations were partially derived more than 20 years ago (Scharlemann, 1983), but did not

receive much attention or were even considered erroneous (Beskin & Karpov, 2005).

Such a model may offer a natural explanation of certain accretion patterns. Accretion

onto Sgr A* gives an excellent opportunity for testing. Our Galaxy is proven to host

a Supermassive Black Hole (SMBH) named Sgr A* in its center (Ghez et al., 2003;

Shen, 2006). This black hole accretes matter and emits radiation with characteristic

low-luminosity spectrum (Narayan et al., 1998). This spectrum was satisfactory explained

with the combination of two models: jet or non-thermal (Yuan et al., 2003) radio-emission

and X-Rays with IR radiation coming from conventional ADAF flow. However, the

large number of free parameters allows one to fit any spectrum well. Model with no free

parameters left is an ultimate goal of the ongoing study.

Partial progress in building a self-consistent accretion model is made in this chapter,

which is organized as follows. Averaged spherical MHD model with turbulence is devised

in § 2.2. Approximate model employs the characteristic length scale about the size of the

region of interest. Coefficients are taken from several hydrodynamic and MHD simulations.
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External sources sustain turbulence at large radii, whereas turbulence is self-sustained in

the converging flow at small radii. Necessary boundary conditions are discussed in § 2.3 for

general flow and for Sgr A*. Results in § 2.4 are followed by the discussion of the model in

§ 2.5. Observational implications in § 2.6 are supplemented with prospects for future work

and Conclusion in § 2.7. Chapter has several appendices.

2.2 Spherical Model

I base all calculations on Magneto Hydrodynamic system of equations (Landau et

al. , 1984). The viscous terms are retained where they do not vanish in the limit of

vanishing viscosity. The quantities in the following equations are fully dependent on time

and coordinates. General mass flux equation reads

∂ρ

∂t
+∇ · (ρV) = 0, (2.1)

where V is fluid velocity. Force balance is described by Navier-Stokes equation

∂V

∂t
+ (V · ∇)V = −∇p

ρ
−∇ϕg −

[B× [∇×B]]

4πρ
+ ν△V, (2.2)

where ϕg is gravitational potential, ν is kinematic viscosity. The last term is responsible

for finite energy dissipation through Kolmogorov cascade (Landau & Lifshitz, 1987).

Momentum equation is a combination of equations (2.1) and (2.2)

∂(ρVi)

∂t
= − ∂

∂xk

(
pδik + ρViVk +

1

4π

(
1

2
B2δik −BiBk

))
− ∂ϕg
∂xi

+ ν(△V)i. (2.3)

Energy equation

∂

∂t

(
ρV2

2
+ ρε+

B2

8π

)
= −∇

(
ρV

(
V2

2
+ ϕg + w

)
+

1

4π
[B× [V ×B]] + viscous

)
(2.4)
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includes information about the equation of state. Here ε is gas internal energy density,

w = ε+
∫
dp/ρ is gas specific enthalpy. Viscous term is responsible for diffusion. Magnetic

field evolution is described by induction equation

∂B

∂t
= ∇× [V ×B] + νM△B (2.5)

with magnetic diffusivity νM . Magnetic field is solenoidal as well as incompressible random

velocity field:

∇B = 0, ∇u = 0. (2.6)

2.2.1 Dynamics

Spherical accretion is the simplest pattern of all symmetric setups. We need to solve

the basic model first to move then to a more realistic pattern. Construction of the minimal

maximally symmetric model is the subject of the following study.

I employ the natural for the problem spherical coordinates (r, θ, ϕ) and average over

angular variables (θ, ϕ). The results depend only on the radial variable r and not on time

t in the assumption that angular averaging is the same as time averaging. I need now to

determine the essential quantities and derive the closed system of equations on them.

Essential quantities of a non-magnetized solution in Bondi (1952) are the inflow speed

v(r), density ρ(r), and temperature T (r). Turbulent magnetized case requires several

more. As I release the assumption of isotropy, there are two special directions: along the

radial vector er and perpendicular to the radial vector. To describe realistic Magneto

Hydrodynamic turbulence, I need at least 6 quantities: squares of radial and perpendicular

magnetic fields B2
r and B2

⊥, squares of radial and perpendicular random fluid speeds u2

and u2⊥, characteristic length scale L, and dimensionless magnetic helicity ξ. The last
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quantity will be described in detail in the corresponding subsection 2.2.4. For simplicity I

consider random velocity to be isotropic and denote it as u(r).

Total velocity of a fluid parcel

V(r, θ, ϕ, t) = v(r)er + u(r, θ, ϕ, t) (2.7)

is a sum of averaged inflow speed v(r) and instantaneous random velocity u(r, θ, ϕ, t),

where by definition angular average of turbulent velocity vanishes∫
u(r, θ, ϕ, t)dΩ = 0. (2.8)

General continuity equation (2.1) can be averaged with the aid of equations (2.6) and (2.8)

to

4πρ(r)v(r)r2 = Ṁ, (2.9)

where Ṁ is the mass accretion rate.

I derive the averaged force equation from general momentum equation (2.3). Tensor

ρViVk averages out into the diagonal form ρv2δrr + ρu2δik/3. Because there are no sources

of magnetic field (eq. [2.6]) and spherical geometry is assumed, no regular magnetic field

exists. Following Scharlemann (1983), I add Br∇B/(4πρ) to the radial magnetic force

Fr = [B× [∇×B]]r/(4πρ), average over the solid angle, and then set Bϕ = B⊥ and

Bθ = B⊥. Cross-terms with (BθBr), (BϕBr), and (BϕBθ) cancel on average over the solid

angle. Finally, I obtain

Fr =
(r4B2

r )
′
r

8πρr4
−

(r2B2
⊥)

′
r

4πρr2
(2.10)

for the magnetic force. I denote by ()′r radial derivatives. I omit bulk viscosity term that

results from ν△V. Paczynski-Wiita gravitational potential (Paczynski & Wiita, 1980)

ϕg = − rgc
2

2(r − rg)
(2.11)
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is used to imitate the effects of General Relativity, where

rg =
2GM

c2
(2.12)

is a Schwarzschild radius of an object with mass M . I take gas pressure to be that of an

ideal gas p = ρRT/µ, where µ is a mean molecular weight. Combining all the terms, I

come to the averaged force equation

vv′r +
rgc

2

2(r − rg)2
+
R

µ

(ρT )′r
ρ

+
(ρu2)′r
3ρ

+
(r2B2

⊥)
′
r

4πρr2
− (r4B2

r )
′
r

8πρr4
= 0. (2.13)

Averaged energy advection equation can be derived directly from general energy

equation (2.4). Enthalpy term should include contribution from random fluid motions as

well as from gas. Isotropic random motions of fluid exert isotropic pressure prand = ρu2/3

and have the internal energy density εrand = u2/2. Total enthalpy w is

w = wgas + wrand, where wgas =
RT (feae(T ) + fiai(T ) + 1)

µ
and wrand =

5

6
u2.

(2.14)

Fractions of electrons fe ≈ 0.54 and ions fi ≈ 0.46 are calculated for a gas with twice

solar abundance of elements. Such high concentration of helium and metals was assumed

by Baganoff et al. (2003) for spectrum fitting of Sgr A*. Correspondent mean molecular

weight is µ ≈ 0.7g cm−3. Integral heat capacity per particle ae(T ) and ai(T ) are different

for electrons and ions. Ions are non-relativistic down to rg (Narayan & Yi, 1995).

Therefore ai(T ) = 3/2. General expression (Chandrasekhar, 1957) should be used for

thermal relativistic electrons ae(T ) = Θ−1(3K3(Θ
−1) +K1(Θ

−1))/(4K2(Θ
−1) − 1). Here

Θ = kT/mec
2 is dimensionless temperature, Kx(Y ) are modified Bessel functions of the

second kind. Expression for non-relativistic enthalpy is

wNR =
5RT

2µ
+

5

6
u2. (2.15)
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It is valid in the limit Θ ≪ 1. Time derivatives in energy equation (2.4) vanish under

averaging. Equation takes the form ∇q = 0, where q is the energy flux. Part of flux

proportional to random velocity u averages out, because turbulence is incompressible and

u is zero on average (eq. [2.8]). Applying continuity relation (2.9), I finally obtain

vv′r +
rgc

2

2(r − rg)2
+ w′

r +
1

2π

(
B2

⊥
ρ

)′

r

= 0, (2.16)

where again B2
θ = B2

ϕ = B2
⊥. I assumed the term

∫
[B× [u×B]]dΩ to also be zero along

with all viscous energy transfer terms. I limit this study to Advection Dominated flows by

deliberately cutting off diffusion and convection (see Appendix 2.10).

Subtracting force equation (2.13) from energy advection equation (2.16) I get the heat

balance equation that reads in non-relativistic limit

R

µ

(
3

2
T ′
r −

ρ′r
ρ
T

)
+

((
u2

2

)′

r

− ρ′r
ρ

u2

3

)
+
ρr2

4π

(
B2

⊥
ρ2r2

)′

r

+
1

8πρr4
(r4B2

r )
′
r = 0, (2.17)

similar to entropy conservation in hydrodynamics. Work done by gas is represented by

−ρ′r/ρT. The first term has exactly the form of the second, if I make the substitution of

the mean square particles velocity

v2p =
3RT

µ
. (2.18)

Work done by the magnetic field enters the expression as derivatives of ρ and r in the

magnetic part.

2.2.2 Evolution of Turbulence

Dynamics is the only part of ideal Bondi problem (Bondi, 1952). In reality, flow

always has some small scale turbulence that exerts back-reaction on the mean flow. The

magnitude of back-reaction terms should be determined from additional equations that
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describe the evolution of random magnetic field and fluid motions. Since no complete

theory of turbulence exists, I make a lot of approximations. The model is adjusted to

agree with the results of several numerical simulations. I also apply analytical tests similar

to that in Ogilvie (2003) to assure the model reproduces the basic properties of observed

turbulence.

I need non-ideal induction equation (2.5) and Navier-Stokes equation (2.2) to derive

how turbulence evolves. My goal is to compound reasonable equations on average squares

of radial magnetic field B2
r , perpendicular magnetic field B2

⊥, isotropic velocity u2. I also

need equations on characteristic length scale of turbulence L and dimensionless magnetic

helicity ξ.

Radial part of induction equation (2.5) easily gives the equation on B2
r , when the

former is multiplied by 2Br and averaged over the solid angle:

2Br
∂Br

∂t
= 2Br[∇×[ver×B]]r + 2Br[∇× [u×B]]r + 2νMBr(△B)r, (2.19)

where indices ()r without primes denote the radial parts. The left-hand side vanishes as

all time derivatives. The first term on the right-hand side represents the uniform increase

of magnetic field due to flux freezing. I combine it with the continuity equation (2.9)

to eliminate v derivatives. The second term is the dynamo action. It cannot be easily

averaged. Characteristic turbulence length scale L may be used to approximate derivatives

∂Bi

∂xk
∼ Bi

L
ek and

∂ui
∂xk

∼ ui
L
ek, ek− unit vector. (2.20)

Then we arrive at dynamo action with characteristic timescale τdyn = cBuτedd about eddy

turn-over time τedd = u/L. The averaged expression is quadratic in magnetic field. I

take coefficient to be cBu1 at any B2
i and cBu2 at any BiBk with i ̸= k. The final form
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of the dynamo term reads 2Br[∇× [u×B]]r = (cBu1B
2
r + cBu2Br(Bθ + Bϕ))u/L, and

characteristic

Br =
√
B2

r and Bθ = Bϕ = B⊥ =
√
B2

⊥ (2.21)

should be taken. The last term on the right-hand side of equation (2.19) represents

magnetic field dissipation. Dissipation term νM△B of induction equation (2.5) is

macroscopic in turbulence even for vanishing magnetic diffusivity νM (Biskamp, 2003).

I approximate radial dissipation to have a timescale τdyss = cBBτAr about Alfven

timescale τAr = vAr/L. The averaged expression is also quadratic in magnetic field.

I take coefficient to be cBB1 at any B2
i and cBB2 at any BiBk with i ̸= k. Finally,

νMBr(△B)r = vA(cBB1B
2
r + cBB2(Bθ +Bϕ)Br)/L. Collecting all the terms, I obtain

v

r4
∂(B2

rr
4)

∂r
=

−(cBu1B
2
r + 2cBu2BrB⊥)u+ (cBB1B

2
r + 2cBB2BrB⊥)vAr

L
(2.22)

for the radial magnetic field in the absence of external energy sources.

Perpendicular part of induction equation (2.5), for example θ part, gives the equation

on B2
θ when equation (2.5) is multiplied by Bθ and averaged over the solid angle. The

flux freezing condition for perpendicular field is different from that for radial field:

Bθvr = const represents perpendicular flux freezing. I repeat the calculations made

for radial field Br to find dynamo and dissipation terms. Dynamo term takes form

(cBu1B
2
θ + cBu2Bθ(Bϕ +Br))u/L. Dissipation term is vAθ(cBB1B

2
θ + cBB2(Bϕ +Br)Bθ)/L

with perpendicular Alfven timescale for dissipation. Here I take B2
⊥ = B2

θ = BθBϕ = B2
ϕ.

Finally, I obtain

vρ2r2
∂

∂r

(
B2

⊥
ρ2r2

)
= (2.23)

−((cBu1 + cBu2)B
2
⊥ + cBu2B⊥Br)u+ ((cBB1 + cBB2)B

2
⊥ + cBB2B⊥Br)vA⊥

L
,
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where continuity equation (2.9) is used. Radial vAr and perpendicular vA⊥ Alfven speeds

and random velocity u are

vAr =

√
B2

r√
4πρ

, vA⊥ =

√
B2

⊥√
4πρ

, u =
√
u2. (2.24)

Coefficients cBu1, cBu2, cBB1, cBB2 are yet to be determined.

Evolution equation for squared random fluid velocity u2 can be found from momentum

equation (2.3), when it is multiplied by 2u and averaged over the solid angle. Potential

energy and pressure terms average out and only three terms are left

2u

(
(V ∇)V +

∇(ρV)

ρ

)
= 2

u[B× [∇×B]]

4πρ
+ 2uν△u. (2.25)

I apply the same averaging procedure as for magnetic field evolution equations (2.22) and

(2.23). The final result is

vρ2/3
∂

∂r

(
u2

ρ2/3

)
=
cuuu

3 − (cuB1v
2
A + (2cuB1 + cuB2)v

2
A⊥ + 2cuB2(vAvA⊥))u

L
, (2.26)

with additional three coefficients cuu, cuB1 and cuB2. Some of these and other cxx-like

coefficients can be taken from numerical simulations of isotropic turbulence, some of them

can be inferred from analytical tests. They may not simply be set to convenient values like

Ogilvie (2003) did.

2.2.3 Correspondence to Numerical Simulations

Isotropic turbulence is studied quite thoroughly in numerical simulations. Some

results are reproduced by a number of researchers (see Biskamp (2003) for the review).

That is why we may believe in these results and base a model on them. Three simulations

of different turbulence regimes can provide four conditions that let us uniquely determine
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four combinations of coefficients cxx. These regimes are decaying HD turbulence, decaying

MHD turbulence, and dynamo growth of small seed magnetic field. I assume then that cxx

are constants independent of regime and extend the derived model to any anisotropic case.

Let me consider my model in isotropic incompressible case of box turbulence. In these

settings B2
r = B2

θ = B2
ϕ. Squared magnetic field B2 equals B2 = 3B2

r . Transition to the

co-moving frame of averaged inflow in turbulence evolution equations (2.22), (2.23), (2.26)

is done by stating d/dt = −v∂/∂r. Now I should write time derivatives instead of radius

derivatives and set r = const, since matter is not moving anywhere from the box. I obtain

equations of evolution of isotropic turbulent Alfven speed vA and isotropic turbulent

velocity u: (
u2
)′
t
=
ĉuBv

2
Au− ĉuuu

3

L
,

(
v2A
)′
t
=
ĉBuv

2
Au− ĉBBv

3
A

L
. (2.27)

Here vA =
√
B2/

√
4πρ and ρ = const. Coefficients with hats are

ĉBu = cBu1 + 2cBu2, ĉBB =
cBB1 + 2cBB2√

3
, (2.28)

ĉuu = cuu1, ĉuB = cuB1 + cuB2

in terms of previously defined cxx.

I have a freedom to set L, because it enters the equations only in combinations cxx/L,

but cxx are not yet determined. For simplicity of further derivation I take L(r) to be the

effective size of energy containing eddies for isotropic incompressible turbulence:

u2 =

∫ ∞

2π/L
|uk|2dk and v2A =

∫ ∞

2π/L
|vAk|2dk. (2.29)

Isotropic decay of hydrodynamic turbulence is the simplest simulation. The convenient



Chapter 2: Spherically Symmetric Accretion Model with MHD Turbulence 36

constant of decay is Kolmogorov constant CHD. It is defined as

CHD = Ekk
5/3ϵ−2/3 with ϵ = − d

dt

(
u2

2

)
and Ek =

|uk|2

2
, (2.30)

where Ek is energy spectrum, ϵ is a decay rate. Kolmogorov constant was found to be

CHD ≈ 1.65 in the large set of simulations (Sreenivasan, 1995). I substitute this number

into equation (2.30) and evaluate the first integral in equation (2.29) to find

ĉuu =
4π

(3CHD)3/2
≈ 1.14 (2.31)

for isotropic equations (2.27).

Isotropic decay of magneto hydrodynamic turbulence gives two conditions. MHD

Kolmogorov constant is defined similarly to HD case equation (2.30) as

CMHD = Ekk
5/3ϵ−2/3 with ϵ = − d

dt

(
u2 + v2A

2

)
and Ek =

|uk|2 + |vAk|2

2
. (2.32)

MHD turbulence is more difficult to model numerically, but the value of CMHD ≈ 2.2 is

rather rigorous (Biskamp, 2003). In addition, kinetic energy was found to decay in exactly

the same rate as magnetic energy. Evaluation of the sum of two integrals (2.29) with

definitions (2.32) and known CMHD yields

ĉBB − ĉBu = ĉuu − ĉuB ≈ 2π

(
2

3CMHD

)3/2

≈ 1.05. (2.33)

Dynamo simulations explore the regime v2A ≪ u2. Exponential growth of small

magnetic field corresponds to some value of coefficient ĉBu in equations (2.27) as

B2 ∝ exp

(
ĉBu

ut

L

)
. (2.34)

External driving is purely mechanical for v2A ≪ u2, so external source of magnetic field

does not alter the picture of field amplification by dynamo. Characteristic length scale
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in dynamo simulations is usually the size of energy containing eddies L consistent with

definition (2.29), so renormalization of length scale is not required. Older simulations

(Kida et al., 1991) have found b = 0.39 that corresponds to ĉBu ≈ 0.61. Later results

(Schekochihin et al., 2004) indicate a bit higher value ĉBu ≈ 0.7 that I will use for my

model. Finally,

ĉBu = 0.70, ĉBB = 1.75, (2.35)

ĉuu = 1.14, ĉuB = 0.09.

The values of four ĉxx (eq. [2.35]) are not enough to obtain all seven coefficients

cxx in equations (2.22), (2.23), (2.26) with definitions (2.28). However, the application

of common sense analytical conditions to non-isotropic system of equations puts some

additional constrains on cxx that allows me to complete the model with as little guessing

as possible.

Analytic tests are described in Appendix 2.8. This completes the derivation and

verification of turbulence evolution equations (2.22), (2.23), (2.26) with coefficients

4cBB1 = 3.03, cBB2 = 0.00, cBu1 = 0.41, cBu2 = 0.29, (2.36)

cuu = 1.14, cuB1 = 0.09, cuB2 = 0.00

that I obtain summarizing equations (2.28), (2.35), (2.85), and (2.86). However, not all

major effect have been included so far.
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2.2.4 Magnetic Helicity

Certain correlation called ”magnetic helicity” may strongly influence magnetic field

dissipation. This quantity is defined as

H =

∫
V
(A ·B)dV, (2.37)

where A is a vector potential with a defined gauge condition (Biskamp, 2000). Time

derivative of magnetic helicity is very small compared to the time derivative of magnetic

energy in high Reynolds number astrophysical plasma (Biskamp, 2003):

dH

dEM

EM

H
≪ 1. (2.38)

Constancy of magnetic helicity defines the rules of selective decay. Magnetic energy

EM decays in free turbulence down to non-zero value, allowed by constant magnetic

helicity H = const. The final force-free configuration has zero random kinetic energy EK

and has aligned current density and magnetic field j � B (Biskamp, 2003).

However, the derived system of turbulence evolution equations (2.75) and, therefore,

equations (2.22), (2.23), (2.26) cannot handle selective decay. Decay of magnetic energy

must be modified in order to have the transition to zero dissipation rate at certain vAr

and vA⊥ as a function of magnetic helicity H. First, I should employ the proper magnetic

helicity constancy. Then I should quantify the relation between critical vAr, vA⊥, and H.

Let me consider the region S that evolves together with the mean flow of fluid. This

region has the constant angle boundaries θ = const and ϕ = const. Its radial elongation Lr

scales as inflow velocity: Lr ∝ v. The region S contains constant mass m = const of matter,

because matter flux through its boundaries is zero by definition. If I neglect diffusion by
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random velocity, frozen magnetic field lines do not move through the boundaries of the

region. Because of this, magnetic helicity in S is constant H = const (Biskamp, 2003).

The simplest order of magnitude relation between magnetic energy EM and H is

EMLH = H = const (2.39)

in the region S, where LH is magnetic helicity characteristic length scale (Biskamp, 2003).

As magnetic field decays in turbulence, LH grows according to equation (2.39).

I can parametrize LH to be a fraction of L :

LH = ξL. (2.40)

Volume of the region of interest S is

V =
m

ρ
(2.41)

with m = const. Total magnetic energy EM is

EM =
V

8π
(B2

r + 2B2
⊥). (2.42)

I substitute relations (2.40), (2.41), and (2.42) into equation (2.39) and use the definitions

(2.24) of Alfven velocities to come to

L(v2Ar + 2v2A⊥)ξ = const. (2.43)

Now I need to include ξ into the turbulence evolution equations (2.22), (2.23), (2.26) so

that they can handle selective decay. The natural limit of LH growth is the characteristic

size of energy containing eddies L. So regime ξ ≪ 1 corresponds to non-helical turbulence

and regime ξ ∼ 1 to turbulence, where magnetic helicity significantly inhibits dissipation.

Regime ξ ≫ 1 does not occur. The basic way to modify the equations is to decrease by
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a smooth multiplier f(ξ) < 1 magnetic field decay rate. For qualitative agreement with

experiment (Biskamp, 2003) I can employ

f(ξ) = exp(−ξ), (2.44)

what means that magnetic energy dissipation timescale becomes exp(ξ) times larger.

Terms with both u and one of vAr and vA⊥ in magnetic field evolution equations (2.22),

(2.23) do not need to be modified, since random velocity energy decays to zero and these

terms do not matter. However, I multiply the term with both random velocity and Alfven

speed in turbulent velocity evolution equation (2.26) by exp(−ξ) to make random velocity

u decay to zero.

2.2.5 System of Equations with Source Terms

With only minor corrections, the final system of equations can be written down. In

general, turbulence has external sources of energy that sustain finite magnetic and kinetic

energies even in case of box turbulence. I can add source terms to incompressible system

(2.75) and consequently to the system of compressible equations (2.22), (2.23), (2.26).

System (2.75) with coefficients (2.35) and (2.36), modifier (2.44), and source terms

reads

d(v2Ar)

dt
=

(0.70v2Ar + 0.58(vA⊥ − vAr)vAr)u− 3.03v3Ar exp(−ξ)
L

+ c0
v3p
L
, (2.45a)

d(v2A⊥)

dt
=

(0.70v2A⊥ + 0.29(vAr − vA⊥)vA⊥)u− 3.03v3A⊥ exp(−ξ)
L

+ c1
v3p
L
, (2.45b)

d(u2)

dt
=

0.09(v2Ar + 2v2A⊥)u exp(−ξ)− 1.14u3

L
+ c2

v3p
L
, (2.45c)

where vp is the mean square particles speed (eq. [2.18]) and c0, c1, and c2 are dimensionless
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coefficients. These coefficients determine the rates of external energy input into turbulent

fields.

I denote by σ the ratio of total turbulent energy to thermal energy:

σ =
EK + EM

Eth
, so that σ

3RT

2µ
= σ

v2p
2

=
u2

2
+
v2Ar

2
+ v2A⊥. (2.46)

Unlike conventional plasma magnetization, magnetization σ with definition (2.46) includes

the energy of random fluid motions.

In the dynamic equilibrium of constant vAr, vA⊥, u and known ξ system (2.45) gives

three algebraic equations for ratios vAr/vp, vA⊥/vp, and u/vp as functions of c0, c1, and c2.

To estimate c0, c1, and c2 I take stationary driven isotropic turbulence with kinetic energy

EK equal to magnetic energy EM . Isotropic turbulence of interest has vAr = vA⊥ = u/
√
3.

Such turbulence occurs far from the central object, where outer magnetization is a constant

σ∞. Solving system (2.45) I obtain using equation (2.46)

c0 = c1 ≈ 0.124σ3/2∞ , c2 = 3c0 ≈ 0.371σ3/2∞ (2.47)

in case ξ = 0. I apply these values even to turbulence with ξ > 0. Total external energy

input Q+ into EK and EM is

Q+ ≈ 0.742σ3/2∞
v3p
L
. (2.48)

This energy adds up to thermal gas energy after being processed through turbulence.

However, I do not adjust my dynamical equations (2.13) and (2.16) for Q+. I self-

consistently omit external heating and radiative or diffusive cooling. This omission is

physically justified sufficiently far from the central object, where cooling Q− balances

external heating Q+. It is also justified in the inner region, where both Q+ and Q−

are negligible compared to the internal driving and energy advection. Internal driving
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represents build-up of self-sustained turbulence in a converging flow due to conservation of

magnetic flux (Coker & Melia, 2000).

Only the size L of energy containing eddies should be specified to complete the

derivation of closed system of equations. In the case when energy input Q+ does not

matter, the problem has only one relevant scale that is the size of the system r. Therefore,

I can set L to be the fraction of radius

L = γr (2.49)

with the proportionality constant γ about unity. However, energy input from external

sources Q+ is relatively large far from the central source. This causes medium with

constant Q+, constant vp, and constant σ∞ to have constant size of largest eddies

L = L∞ = const (2.50)

because of equation (2.48). This equality holds for radii larger than some r0 ≈ L∞/γ. I

introduce a function with a smooth transition from relation (2.49) for r ≪ r0 to relation

(2.50) for r ≫ r0:

L(r) = L∞

(
1− exp

(
− γr

L∞

))
(2.51)

This completes derivation and verification of 8 equations (2.9), (2.13), (2.16), (2.22),

(2.23), (2.26), (2.43), (2.51)with coefficients (2.35), (2.36), and (2.47) on 8 quantities L(r),

ξ(r), v(r), u(r), vAr(r), vA⊥(r), T (r), ρ(r) that are the characteristic turbulent length

scale, normalized magnetic helicity, matter inflow velocity, turbulent velocity, radial Alfven

speed, perpendicular Alfven speed, temperature, and density. I rewrite the equations once

again in terms of named quantities:

4πρvr2 = Ṁ, (2.52a)



Chapter 2: Spherically Symmetric Accretion Model with MHD Turbulence 43

vv′r +
rgc

2

2(r − rg)2
+
R

µ

(ρT )′r
ρ

+
(ρu2)′r
3ρ

+
(r2ρv2A⊥)

′
r

ρr2
−

(r4ρv2Ar)
′
r

2ρr4
= 0, (2.52b)

vv′r +
rgc

2

2(r − rg)2
+ w′

r +
5

3
uu′r + 2(v2A⊥)

′
r = 0 with (2.52c)

w = wR =
RT

µ

(
0.54

3K3(Θ
−1) +K1(Θ

−1)

Θ(4K2(Θ−1)− 1)
+ 1.69

)
+

5

6
u2 or w = wNR =

5RT

2µ
+

5

6
u2,

v
(ρv2Arr

4)′r
ρr4

=
3.03v3Ar exp(−ξ)− (0.70v2Ar + 0.58(vA⊥ − vAr)vAr)u

L
− 0.64

L∞

(
RT∞σ∞

µ

)3/2

,

(2.52d)

vρr2
(
v2A⊥
ρr2

)′

r

= (2.52e)

3.03v3A⊥ exp(−ξ)− (0.70v2A⊥ + 0.29(vAr − vA⊥)vA⊥)u

L
− 0.64

L∞

(
RT∞σ∞

µ

)3/2

,

vρ2/3
(
u2

ρ2/3

)′

r

=
1.14u3 − 0.09(v2Ar + 2v2A⊥)u exp(−ξ)

L
− 1.93

L∞

(
RT∞σ∞

µ

)3/2

, (2.52f)

L(v2Ar + 2v2A⊥)ξ = 3L∞ξ∞
RT∞σ∞

µ
, (2.52g)

L = L∞

(
1− exp

(
− γr

L∞

))
. (2.52h)

Here Θ = kT/mec
2. Since my prescription for external driving of turbulence is Q+ = const,

I take vp and L to be constant in the source terms. Relativistic wR (eq. [2.14]) and

non-relativistic wNR (eq. [2.15]) values of enthalpy w are employed. In the next section I

describe the values of boundary conditions and parameters for the equations I solve.

2.3 Boundary Conditions and Parameters

The system (2.52) consists of 5 differential and 3 algebraic equations and should be

integrated inward from some outer boundary at rx. This requires knowledge of at least
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eight constants. Seven of them are the values ”at infinity” L∞, T∞, ρ∞, ξ∞, u∞, vAr∞,

vA⊥∞. The eighth is the accretion rate Ṁ. It is usually determined by some extra condition

and is not adjustable. I assume isotropic turbulence with EK = EM at the outer boundary.

Therefore,

vAr∞ = vA⊥∞ =

(
RT∞σ∞

µ

)1/2

and u∞ =

(
3RT∞σ∞

µ

)1/2

, (2.53)

and I have one model parameter σ∞ instead of 3 velocities vAr∞, vA⊥∞, and u∞. Another

adjustable parameter of the model is γ that determines the size of energy containing eddies

L near the object (eq. [2.52h]).

Parameter γ is not free in principle, but its value cannot be determined within the

proposed theory. Neither there exist anisotropic MHD simulations that could provide γ.

All simulations to date show γ to be within 0.2− 2 (Tennekes & Lumley, 1972; Landau &

Lifshitz, 1987; Biskamp, 2003) in both HD and MHD case. I assume the same range of γ

in my calculations.

2.3.1 Outer Medium Transition

Bondi radius

rB = rg
c2

c2∞
with c∞ =

(
5RT∞
3µ

)1/2

(2.54)

is the natural length scale of the spherical accretion flow (Bondi, 1952). Density ρ and

temperature T of plasma are constant for radii r ≫ rB, because gravitational energy and

gas regular kinetic energy are negligible there compared to gas internal energy (Bondi,

1952). Averaged magnetic field and averaged random velocity are also constant for

r ≫ rB, because constant external energy input balances dissipation in this region. As a

consequence, ξ = ξ∞ and L = L∞ for r ≫ rB.
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I set the outer boundary at rx = 3rB, where matter is almost uniform. Length scale

L∞ should be determined from known external energy input Q+ and outer magnetization

σ∞. However, Q+ is not known. I assume for simplicity L∞ = γrB, so that L changes its

behavior near rB together with temperature and density.

Bondi radius is about rB ≈ 3× 105rg for our Galactic Center (Ghez et al., 2003). The

properties of gas at 3rB are somewhat constrained from observations. I take the values

for uniformly emitting gas model with temperature T∞ ≈ 1.5× 107 K, electron and total

number densities ne∞ = 26cm−3, n∞ = 48cm−3 (Baganoff et al., 2003) at rx = 3rB that

corresponds to 5′′ in the sky. The presence of dense cold component can make the average

temperature much lower and the average density much higher (Cuadra et al., 2006), but I

am leaving these uncertainties for future research.

Expanding and colliding hyperalfvenic stellar winds provide magnetic field into the

region. Its strength near Bondi radius is not known. Only the very general estimate can

be made. Matter magnetization is likely to be lower than the saturation value of σ∞ = 1.

I take the values in the range σ∞ = 0.001 − 1 to cover all reasonable magnetization

states of matter at 3rB. If magnetic field is rather a product of decay than dynamo

amplification, then the local dimensionless helicity ξ may be close to unity. I cover the

range ξ∞ = 0.001− 0.5 in simulations to determine the possible dynamical significance of

non-zero magnetic helicity.

2.3.2 Transition to Rotationally Supported Flow

The system of equations (2.52) has the same property as spherically symmetric system

of hydrodynamic equations (Bondi, 1952): subsonic solution exists for all accretion rates
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Ṁ up to maximum Ṁ∗, transonic solution is valid for the only value Ṁ∗, and no solution

exists for Ṁ > Ṁ∗. The solution with

Ṁ = Ṁ∗(for transonic solution) (2.55)

is preferable, because it has the highest rate of energy transfer towards the equilibrium

state of the system matter-SMBH. The same argument is valid for a general hydrodynamic

nozzle (Landau & Lifshitz, 1987). It is reasonable to expect that maximum mass flux

solution for system with magnetic field (2.52) also obeys the condition (2.55). However,

even small amount of angular momentum can change the picture.

Every real astrophysical accretion flow has non-zero specific angular momentum at

the outer boundary

l = λrgc, or equivalently, l = vKcirrcir, (2.56)

where rcir is a radius where matter becomes rotationally supported and vKcir is Keplerian

velocity at rcir. General Newtonian expression for Keplerian velocity at radius r is

vK = c

√
rg
2r
. (2.57)

At larger radii r > rcir angular momentum exerts relatively small force Fl ∝ l2/r3

on plasma, since Fl decreases with radius faster than gravitational force Fg ∝ rgc/r
2.

Numerical simulations (Cuadra et al., 2006) suggest rcir ∼ 3 × 103rg for our Galactic

Center.

When angular momentum (eq. [2.56]) is large, λ ≫ 1, it should be able to travel

outward through the outer quasi-spherical solution by means of rϕ component of stress

tensor tαβ . The angular averaged form of this component is

trϕ =
< BrB⊥ >Ω

4π
, (2.58a)
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where I neglect the kinetic part for the estimate. It can be transformed with the aid of

Schwartz formula < xy >≤
√
< x2 >

√
< y2 > into inequality

trϕ ≤ BrB⊥
4π

(2.58b)

with definitions (2.21) of rms Br and B⊥.

Let us take a disk (Shakura & Sunyaev, 1973) with height H and write the angular

momentum transfer equation as

d(r2Htrϕ)

dr
= 0. (2.59a)

The result of integration is (Gammie & Popham, 1998)

Ṁl = 4πHr2trϕ, (2.59b)

in case of large dimensionless angular momentum λ ≫ 1 (Gammie & Popham, 1998). I

take specific angular momentum l from equation (2.56) and the accretion rate to be

Ṁ = 2πrHρv. (2.60)

I substitute angular momentum l from relation (2.56), accretion rate Ṁ from equation

(2.60), Alfven speeds from definitions (2.24), Keplerian velocity from equation (2.57), and

inequality (2.58b) on trϕ into angular momentum transfer equation (2.59b) to obtain

vvK
vAvA⊥

√
rcirc
r

= 2χ, χ ≤ 1 (2.61a)

that should be valid at any radius r. Sometimes, this inequality is valid for r > rcir if it is

valid at rcir, so that condition (2.61a) can in some cases be simplified to

vvK
vAvA⊥

≤ 2 at rcir. (2.61b)

Height of the disk H cancels out of final expression, thus conditions (2.61) are

approximately valid even for flows with H ≈ r. Such flows are likely to describe the
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realistic transition region from outer quasi-spherical inflow to inner rotational solution.

There are no extra degrees of freedom to put conditions on the surface of compact object,

so I consider an object to be effectively a black hole.

Condition of angular momentum transport (2.61) may be stronger than maximum

accretion rate condition (2.55). This depends on the value of specific angular momentum l

and viscous α parameter (Shakura & Sunyaev, 1973). Viscous α is approximately α ∼ χ σ

according to my definitions (2.46) and (2.61a). If α & 0.5, then accretion proceeds without

direct dynamical effect of rotation (Narayan et al., 1997). Thus, two types of solutions are

possible:

• maximum accretion rate solutions that describe radial flows with small angular

momentum l . crg or large viscosity χ σ & 0.5 (subsection 2.4.1),

• flows with the rotational support that work for large angular momentum l ≫ crg and

small viscosity χ σ . 0.5 (subsection 2.4.2).

The condition (2.61) gives a crude estimate of the inflow velocity and accretion rate Ṁ,

since it assumes specific angular momentum to be constant down to rcir. As matter travels

to rcir, the amount of specific angular momentum left becomes smaller. Nevertheless, I

calculate the solutions with effective angular momentum transport using condition (2.61)

to illustrate the dependence of accretion rate on model parameters for the rotating flow.
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2.4 Results

2.4.1 Maximum Rate Solution

Let me first disregard the angular momentum transport condition (2.61) and calculate

the flow with small angular momentum l ≪ rgc, when mean rotation is not dynamically

important.

The system of equations I solve (2.52) can be rewritten as

(Fi)
′
r

Fi
=
Ni(F, r)

D
for i = 1..8. (2.62)

Here Fi(r) are 8 functions I solve for, Ni(F, r) are function- and radius- dependent

numerators, and

D = 1− v2

V 2
s

(2.63)

is a common denominator. Critical velocity Vs is

V 2
s = c2sg + 2v2A⊥ with c2sg = c2s +

5u2

3
. (2.64)

Effective sound speed csg is equal to that of plasma with effective particles velocity

v2pg = v2p + u2.

According to the maximum-rate condition (2.55) I search for a smooth solution that

has a sonic point at some radius rs. The condition at rs is D(rs) = 0. Zero denominator

requires all the numerators Ni(F, r) to be zero at rs. It can be shown from system (2.52)

that all eight conditions Ni(F(rs), rs) = 0 collapse into just one, what indicates that

maximum accretion rate solution is smooth. Two equalities

D(rs) = 0 and N1(F(rs), rs) = 0 (2.65)
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give the missing 8-th condition on Ṁ for system (2.52) and the sonic radius rs. Thus, I

have 7 conditions at the boundary at 3rB and 1 condition somewhere in the region. I

employ the shooting method to search for Ṁ and rs that satisfy the relation (2.65).

I obtain the Bondi hydrodynamic model (Bondi, 1952), if I set all Alfven velocities

and turbulent velocity to zero and use non-relativistic prescription for enthalpy wNR (eq.

[2.52c]). Therefore, the accretion rate Ṁ equals Bondi accretion rate of monatomic gas

ṀB =
π

4
r2gc

4ρ∞

(
3µ

5RT∞

)3/2

≈ 4× 10−6M⊙year
−1 (2.66)

in the limiting case of no turbulence. The number is calculated for the Black Hole in

our Galactic Center with rg = 1.1 × 1012cm (Ghez et al., 2003), T = 1.5 × 107K, and

n ≈ 48cm−3 (Baganoff et al., 2003). Accretion rate Ṁ appears to be lower than ṀB when

turbulent energy is non-zero (Fig. 2.1).

Inhibition of accretion by turbulence has the following explanation. First, energy of

magnetic field increases inward, therefore it exerts back-reaction force stopping matter

(Shvartsman, 1971). Second, magnetic field serves a very effective mechanism of energy

conversion from gravitational to thermal via dissipation of turbulence (Igumenshchev &

Narayan, 2002). Larger thermal energy corresponds to larger gas pressure that also stops

matter. Within the deduced model I can estimate the actual decrease of accretion rate Ṁ

from Bondi value ṀB.

I take my reference model to have the values γ = 1, σ∞ = 1, ξ∞ = 0.025 of,

correspondingly, dimensionless scale of turbulence, outer magnetization, and outer

magnetic helicity. The found accretion rates are 0.14ṀB for non-relativistic equation of

state and 0.24ṀB for relativistic equation of state. I can now consider the whole ranges

of all three parameters and explain the observed correlations between them and accretion



Chapter 2: Spherically Symmetric Accretion Model with MHD Turbulence 51

1.000.500.30 1.500.70

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

H1aL length scale Γ=L�r

a
c
c
re

ti
o

n
ra

te
M 
�M

B 

0.001 0.01 0.1

0.50

0.20

0.10

0.05

0.02

H1bL outer magnetic helicity Ξ¥

a
c
c
re

ti
o

n
ra

te
M 
�M

B 

0.002 0.01 0.05 0.2 0.9

1.00

0.50

0.20

0.30

0.15

0.70

H1cL outer magnetization Σ¥

a
c
c
re

ti
o

n
ra

te
M 
�M

B 

0.001 0.003 0.01 0.03 0.1 0.3 1

5

10

50

100

500

1000

H1dL outer magnetization Σ¥

s
o

n
ic

ra
d

iu
s

r S
�r

g

Larger length scaleÞ slower dissipation,

more active repulsion of stronger magnetic field

Þ smaller accretion rate M
 

Larger outer Σ¥ Þ

larger magnetization Σ insideÞ

larger field backreactionÞ

smaller rate M
 

Larger outer Ξ¥ Þ less dissipation,

Þ stronger magnetic field,

Þ higher rate M
 

Relativistic EOS: large sonic radius

Larger outer Σ¥ Þ smaller accretion rate,

smaller inflow speedÞ smaller sonic radius

Non-relativistic EOS: small sonic radius

Hsee textL

Figure 2.1.— Maximum accretion rate solution. Dependence of the accretion rate in

units of Bondi rate on dimensionless parameters: characteristic length scale γ (Fig. 2.1a),

outer magnetic helicity ξ∞ (Fig. 2.1b), outer matter magnetization σ∞ (Fig. 2.1c). Depen-

dence (Fig. 2.1d) of sonic radius on outer magnetization σ∞. I take the reference model to

have the following values of parameters: γ = 1, σ∞ = 1, ξ∞ = 0.025. One parameter is

varied to make one plot. Non-relativistic 1-T equation of state (dashed) versus relativistic

1-T equation of state (solid).
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rate Ṁ .

Larger flow magnetization σ results in lower accretion rate Ṁ . Larger magnetic

field and turbulent velocity field exerts larger back-reaction force on matter. Also,

transformation of gravitational energy into thermal happens more readily if magnetization

is larger. Larger thermal energy means larger gas pressure and larger back-reaction force

on matter striving to fall onto the central object.

Several factors lead to higher magnetization. Larger outer magnetization σ∞ makes

magnetization in the entire flow σ larger. Then larger dissipation length scale γ allows

for smaller dissipation of magnetic field. Larger magnetic helicity ξ also lowers magnetic

energy dissipation and leads to larger magnetization σ. These correlations can be observed

on Figure 2.1. Increase of the relative length scale of energy containing eddies γ from 0.2

to 2 results (Fig. 2.1a) in about 2 times drop in accretion rate Ṁ. Accretion rate stays

constant (Fig. 2.1b) at small values of outer magnetic helicity ξ∞. However, Ṁ drops an

order of magnitude as turbulence approaches highly helical state at outer boundary 3rB

with ξ∞ close to 0.5. The dependence of Ṁ on outer magnetization σ∞ is not quite steep:

accretion rate gradually decreases about 4 times as outer magnetization increases 3 orders

of magnitude from 0.001 to 1. Surprisingly, accretion rate does not rise to ṀB (Fig. 2.1c)

even for very small outer magnetization σ∞ ∼ 0.001 for non-relativistic equation of state.

Even small outer magnetic field increases inwards and influences flow dynamics.

Accretion rate is systematically about 40% higher (Fig. 2.1) for relativistic equation

of state (solid line) compared to non-relativistic equation of state (dashed line), because

magnetized system has some properties of a non-magnetized one. Formula for Bondi mass

accretion rate (2.66) is valid only for non-relativistic monatomic gas that has an adiabatic
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index Γ = 5/3. Accretion rate is higher for lower Γ and is about 3 times larger (Shapiro

& Teukolsky, 1983) in case of ultrarelativistic particles with adiabatic index Γ = 4/3.

Accretion rate Ṁ is determined by relation (2.65) at a sonic radius rs that is smaller than

103rg (Fig. 2.1d). Electrons become relativistic at somewhat larger radius about 103rg

in the solutions of system (2.52). This leads to gas adiabatic index Γ (magnetic field is

disregarded) lower than 5/3 at sonic point r = rs. Thus accretion rate is considerably

larger in case of relativistic equation of state.

It is also instructive to trace the dependence of sonic radius rs on parameters. Sonic

radius for hydrodynamic accretion of non-relativistic monatomic gas is equal to several

Schwarzschild radii rs = 2 − 10rg (Beskin & Pidoprygora, 1995). Sonic radius is a

considerable fraction of rB for a gas with adiabatic index Γ substantially smaller than 5/3

for non-magnetized accretion (Bondi, 1952). Magnetized accretion has the same properties.

Non-relativistic EOS (solid line) results in very small sonic radius rs = 7− 11rg (Fig. 2.1d).

Sonic radius for relativistic EOS (dashed line) is rs = 300− 1200rg about the radius where

electrons become relativistic r ∼ 103rg. The value of sonic radius drops several times

as plasma outer magnetization σ∞ increases from 0.001 to 1. As outer magnetization

σ∞ increases, accretion rate drops (Fig. 2.1c), because density ρ and gas inflow speed v

decrease. Then effective sound speed Vs equals the inflow speed v at a point closer to the

black hole.

Inflow velocity v as well as other characteristic velocities of the flow are depicted on

Figure 2.2 as functions of radius r for the reference model with σ∞ = 1, γ = 1, ξ∞ = 0.025.

All velocities are normalized to the free-fall speed

vff = c

√
rg

r − rg
. (2.67)
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Figure 2.2.— Flow velocities, normalized to free-fall speed versus radius for maximum-

rate solution: sound speed, inflow velocity, radial Alfven speed, 1-D perpendicular Alfven

speed, turbulent velocity. Parameters σ∞ = 1, γ = 1, ξ∞ = 0.025. Relativistic 1-T equation

of state is on Figure 2.2a, non-relativistic 1-T EOS is on Figure 2.2b.
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I also normalize perpendicular Alfven velocity vA⊥ and turbulent speed u to one dimension.

Horizontal line on Figure 2.2 corresponds to radial dependence r−1/2.

Inflow velocity v monotonically increases inwards, whereas sound speed cs

monotonically decreases with intersection almost at the sonic point. Radial Alfven velocity

vAr, perpendicular Alfven velocity vA⊥ and turbulent velocity u (Fig. 2.2) start out as

constants from the outer boundary at 3rB, where turbulence is sustained by external

pumping. Then these velocities increase and deviate from one another. Radial Alfven

velocity vAr appears to be much larger than vA⊥ and u in the inner accretion region. This

fulfills the expectations of earlier models (Shakura & Sunyaev, 1973; Scharlemann, 1983;

Beskin & Karpov, 2005). At small radius turbulence is driven by freezing-in amplification

of magnetic field and random velocity. Left-hand sides of turbulence evolution equations

(2.52d), (2.52e), and (2.52f) dominate over corresponding terms with external driving for

radius r . 104rg. Internal driving of vAr is much more effective than driving of vA⊥ and

u. Therefore radial Alfven velocity vAr is larger than other two speeds. This refutes any

model with isotropic magnetic field.

Several pairs of lines intersect on velocity plot (Fig. 2.2). I consider three main

intersection points for the reference model with σ∞ = 1, γ = 1, ξ∞ = 0.025, and relativistic

EOS (Fig. 2.2a). Crossing of inflow velocity v and sound speed cs occurs almost at the

sonic point at rs, determined by relation (2.65) with critical velocity Vs (eq. [2.64]).

No plasma waves can escape from within the region with high inflow velocity v > Vs.

Approximately cs ≈ Vs at sonic point rs ≈ 6 × 10−4rB, because of low magnetization

σ ≈ 20% in that region (Fig. 2.3a). Alfven point is determined by equality v = vAr at

radius rA. Alfven waves cannot escape from within the region where inflow speed is greater

than radial Alfven speed vAr. Equality holds at relatively large radius rA ≈ 0.03rB. The
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Figure 2.3.— Magnetization σ versus dimensionless distance from the compact object r/rB

is on Figure 2.3a. Dimensionless magnetic helicity ξ versus dimensionless distance from the

compact object r/rB is on Figure 2.3b. Both are for the maximum-rate solution with

relativistic equation of state.
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third combination of the same three velocities also gives a characteristic intersection point.

Radial Alfven speed vAr increases faster inwards and becomes equal to sound speed cs at

about r ≈ 4rg. Further relative increase of vAr leads to magnetic energy dominated flow,

what can be traced on magnetization plot (Fig. 2.3a).

Figure 2.3a shows evolution of plasma magnetization σ with radius r for the reference

model. Thermal energy equipartition assumption does not hold, id est turbulent energy

does not equal to constant fraction of thermal energy σ ̸= const. Magnetization σ varies

more than one order in magnitude from 0.07 to 3. It starts out at initial σ∞ = 1 at 3rB,

where turbulence is supported by external energy input Q+ = const. Then σ deviates

down as r decreases. Magnetization σ drops, because length scale L decreases with radius

r that causes turbulence to decay faster. At about 0.03rB magnetization starts to rise as

internal turbulence driving takes over. Inflow velocity v slightly deviates up from Alfven

velocity vA as r decreases. Since internal driving rate is proportional to v (left-hand sides

of equations (2.52d), (2.52e), and (2.52f) dissipation rate is proportional vAr, parameter

σ grows slightly with decreasing radius. The growth is about a factor of 5 for 3.5 orders

of magnitude decrease in radius. Magnetization σ jumps up in the region very close to

the event horizon of the black hole. However, this jump may originate from inconsistent

treatment of General Relativity.

The dependence of magnetic helicity ξ on radius is shown on Figure 2.3b. Helicity

ξ behaves almost reciprocally to magnetization σ from Figure 2.3a. Such a behavior

can be seen from magnetic helicity equation (2.52g). Magnetization σ decreases order

of magnitude during the transition from externally supported to internally supported

turbulence around r ≈ 0.03rB. Magnetic helicity ξ also increases an order of magnitude

from 0.025 to 0.2. Then ξ gradually decreases down to initial value. Thus magnetic helicity
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ξ does not change dynamics if it is initially small ξ∞ . 0.1. Only when ξ∞ is large,

accretion rate drops.

Deviation of inflow velocity v from the free-fall scaling r−1/2 makes a density profile

in magnetized flow different from that in standard Advection Dominated Accretion Flow

(ADAF). I consider the flow where energy is only advected inward. Nevertheless, I obtain

ρ ∝ r−ζ with ζ ≈ 1.25 (2.68)

almost independently on the parameters or the equation of state, somewhat shallower than

ρ ∝ r−1.5 in ADAF.

The only question left is how well this flow with maximum accretion rate can describe

the real situation with large angular momentum l. Given the solution of the system (2.52)

I can check whether the condition for effective angular momentum transport condition

(2.61) holds. Condition (2.61) breaks when evaluated for maximum-rate solution with

parameters ξ∞, σ∞, and γ within the chosen ranges and circularization radius rcir > rg.

This means a flow with maximum accretion rate is unable to effectively transport the

angular momentum outward. The same conclusion can be made simpler. The transport

of angular momentum is a magnetic process. So, l can be transported only by Alfven

waves. However, Alfven waves cannot escape from the region within rA ≈ 0.03rB from the

compact object that makes angular momentum transport impossible even from quite large

radius.

2.4.2 Solution with Effective Angular Momentum Transport

Solution with large outer angular momentum l ≫ rgc and small viscosity may have

properties, substantially different from those of maximum-rate solution. The actual details
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of the solution and allowed accretion rate depend on how this angular momentum is

transported. For the simple estimate I suppose that the accretion rate is determined by

the equality in angular momentum transport condition (2.61). Maximum accretion rate Ṁ

for condition (2.61) appears to be about two orders of magnitude lower than Bondi rate

ṀB (eq. [2.66]).

I add one parameter in modeling: unknown circularization radius rcir for specific

angular momentum l (eq. [2.56]). I take it to be rcir = 103rg for the reference model. Plots

of the accretion rate versus model parameters are shown on Figure 2.4. Dependencies for

the rotating solution (Fig. 2.4) have the opposite slopes to those for the maximum-rate

solution on Figure 2.1. Accretion rate Ṁ increases with increasing outer magnetization

σ∞ (Fig. 2.4b) and increasing outer magnetic helicity ξ∞ (Fig. 2.4c). Both effects lead to

higher plasma magnetization σ. I showed in the previous subsection 2.4.1 that the magnetic

field plays an inhibiting role on matter inflow, and that the larger the magnetic field is, the

smaller the accretion rate Ṁ is. However, the correlation between the magnetic field and

accretion rate is the opposite in case of the rotating flow. Accretion rate quantitatively

agrees with relation for ADAF flows Ṁ ∼ αṀB ∼ σχṀB (Narayan et al., 1997) with

σ ∼ 0.01 at rcir (Fig. 2.6a).

The allowed by condition (2.61) inflow speed v is proportional to the product of

radial Alfven speed vAr and perpendicular Alfven speed vA⊥. Larger magnetic field results

in larger transport of angular momentum outward, so larger inflow velocity v and larger

accretion rate are possible. Larger outer magnetization σ∞ and larger outer magnetic

helicity ξ∞ both lead to higher magnetization σ and higher magnetic field. Inhibiting effect

of magnetic field is smaller in case of lower accretion rates Ṁ and lower inflow velocities v.

Lower v results in lower relative driving of turbulence that makes magnetic field weaker.
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Figure 2.4.— Solution with angular momentum transport. Dependence of the ac-

cretion rate in units of Bondi rate on dimensionless parameters: characteristic length scale

γ (Fig. 2.4a), outer magnetic helicity ξ∞ (Fig. 2.4b), outer magnetization σ∞ (Fig. 2.4c),

and circularization radius rcir in units of rg (Fig. 2.4d). I take the reference model to have

the following parameters: γ = 1, σ∞ = 1, rcir = 103rg, ξ∞ = 0.025. Non-relativistic 1-T

equation of state (dashed) versus relativistic 1-T equation of state (solid).
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Weaker magnetic field has weaker influence on dynamics. In sum, larger magnetic field B

results in larger accretion rate Ṁ, when it needs to transfer angular momentum.

The dependence of Ṁ on length scale γ is obscured by the dependence of external

driving on γ. Accretion rate Ṁ is smaller for smaller magnetic field, but the state of

low magnetization can be achieved in two different ways. Firstly, magnetic field decays

faster when L decreases. However, the plasma at circularization radius rcir = 103rg is

still partially influenced by the outer boundary conditions. Internal driving does not

depend on L, whereas external driving is stronger and magnetization σ is higher, when L

is small. The described two effects balance each other and make accretion rate Ṁ almost

independent of dimensionless length scale γ (Fig. 2.4a).

Accretion rate Ṁ decreases with the decrease of circularization radius rcir (Fig. 2.4d)

for non-relativistic equation of state. To explain this, I trace on Figure 2.5b all the

quantities that enter angular momentum transport condition (2.61b) for the reference

model. Velocities normalized by the free-fall speed (eq. [2.67]) are shown on Figure 2.5b.

Inflow speed v and radial Alfven velocity vAr reach free-fall scaling at about 0.02rB. Only

perpendicular Alfven velocity vA⊥ has a different dependence on distance from the central

object for r < 0.02rB. Because vA⊥ decreases with radius, the allowed v and Ṁ are smaller

for smaller circularization radius.

However, the accretion rate increases for small circularization radii for 1-T equation

of state (Fig. 2.4d, solid line). This is the consequence of the decreasing gas adiabatic

index, when electrons reach relativistic temperatures. Solutions with lower adiabatic index

are known to have larger accretion rates (Bondi, 1952) that is equivalent to the lower

inflow speeds v in the solutions for the fixed matter inflow rate. Velocity v (Fig. 2.5a)
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Figure 2.5.— Flow velocities, normalized to free-fall speed versus radius for solution with

angular momentum transport: sound speed, inflow velocity, radial Alfven speed, 1-D

perpendicular Alfven speed, turbulent velocity. Parameters σ∞ = 1, γ = 1, ξ = 0.025,

rcir = 103rg. Relativistic 1-T EOS on Figure 2.5a, non-relativistic 1-T EOS on Figure 2.5b.
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starts deviating down from the self-similar r−1/2 solution at approximately 103rg, making

the solutions with higher Ṁ possible. In fact, condition (2.61) for the solutions with

small rcir becomes critical at some fixed point rd > rcir instead of reaching equality at

rcir (eq. [2.61b]). Therefore, according to condition (2.61a), maximum value of the inflow

speed grows with the decrease of circularization radius as v ∝ r
−1/2
cir , explaining the rise of

accretion rate for small rcir (Fig. 2.4d, solid line) for 1-T equation of state.

Solution for non-relativistic equation of state, in turn, possess its own feature.

Self-similar flow (see Appendix 2.9) settles in at 103rg, making accretion rate almost

independent on circularization radius (Fig. 2.4d). Magnetic helicity ξ in such a flow is a

number about unity what is consistent with self-similar solution obtained in Appendix 2.9.

Self-similar flow can not establish for 1-T equation of state, because relativistic effects

become important before it establishes and break self-similarity.

In fact, magnetization σ and magnetic helicity ξ (Fig. 2.6) are not constant at small

radii for correct 1-T EOS, because these relativistic corrections work. At about 0.01rB

magnetization reaches almost constant level σ ≈ 0.02 (Fig. 2.6a) and then starts to slightly

deviate down, because equilibrium σ for matter with lower gas adiabatic index Γ < 5/3

is lower. Magnetic helicity ξ behaves (Fig. 2.6b) the opposite way to magnetization σ :

magnetic helicity reaches ξ ≈ 1.5 at 0.01rB and starts to slightly deviate up as the radius

decreases.

2.5 Discussion of the Model

I present the sophisticated analytical model to determine the properties of spherical

magnetized accretion. The common assumptions of magnetic field isotropy and thermal



Chapter 2: Spherically Symmetric Accretion Model with MHD Turbulence 65

equipartition are released, but many assumptions are still left. As usually in fluid dynamics

a lot of simplifications are made during the course of elaboration. The validity of almost

everything can be questioned. The system of equations (2.52) may not describe the real

flow (subsection 2.5.1) or may have some inaccuracies (subsection 2.5.2). Gas cooling

may not be neglected (subsections 2.5.3). Convection and diffusion may change the

flow structure (subsection 2.5.4). The equation of state was also found to influence the

dynamics (subsection 2.5.5). Let me discuss all these topics and determine the practical

significance of the model.

2.5.1 Real Flow

Presented model is partially applicable to the real systems. It may describe some gas

flows onto Supermassive Black Holes in Low Luminosity Galactic Centers, in particular in

the center of our Galaxy. These flows are geometrically thick (Narayan & Yi, 1995) and

may have low angular momentum (Moscibrodzka et al., 2006). However, the real flows

may have properties that my model cannot handle in its current state. First of all, the

sources of matter and external driving should be explicitly accounted for. Secondly, the

self-consistent angular momentum transport theory is needed.

The material is mainly supplied to the central parsec of the Milky Way by stellar

winds (Quataert, 2004). The wind-producing stars have a broken power-law distribution

as a function of radius (Baganoff et al., 2003). Some stars are as close to the central black

hole as 0.1rB (Ghez et al., 2003). The stars supply too much material to be accreted,

therefore there exist an outflow (Quataert, 2004). Bondi radius coincides with the radius

where inflow starts to dominate outflow in numerical simulations with the accretion rate
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Ṁ ∼ 10−6M⊙year
−1 (Cuadra et al., 2006). Maximum accretion rate in the solution with

zero angular momentum is 0.2ṀB ≈ 10−6M⊙year
−1 and 0.01ṀB for the rotating flow. So

that the transition from the outflow to the inflow happens at r & 105rg.

I can show that outflow from r & 105rg does not change the accretion rate from

calculated. Outflows substantially alter the value and the sign of inflow velocity v in

the system (2.52). However, the differences in inflow velocity do not influence any other

quantity as long as three conditions are satisfied:

1. v is much smaller than gas particles velocity vp, bulk kinetic energy of gas is negligible

in the outflow region,

2. external driving of turbulence Q+ dominates over internal driving there,

3. condition on Ṁ is set in the inflow region.

The first two conditions are satisfied down to r ∼ 104rg (Fig. 2.2 and Fig. 2.5). The

third condition holds for maximum rate solution, because condition on Ṁ is set at the

sonic point about 103rg from the central object. It also hold for the solution with angular

momentum transport, because the condition on Ṁ is usually set at the inner boundary

103 − 104rg. All three above conditions hold, hence outflows of stellar winds do not

substantially change the accretion rate or any quantity in the system.

2.5.2 Treatment of Magnetic Field

The long history of accretion theory has many accepted models based on ideas,

extended beyond the area of applicability of these ideas. For example, general relativity

was substituted with Paczynski-Wiita gravitational potential (Paczynski & Wiita, 1980;

Shakura & Sunyaev, 1973). Magnetic field was long treated similar to the normal
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matter (Narayan & Yi, 1995; Coker & Melia, 2000). Displacement current was neglected

in magnetic field dynamics that allowed to treat magnetic field without electric field

(Scharlemann, 1983). System of viscous equations describe viscosity by a single parameter

(Shakura & Sunyaev, 1973; Landau & Lifshitz, 1987; Landau et al. , 1984; Biskamp, 2003).

Gyrokinetics is used to solve the problems with non-Maxwellian distribution functions

(Sharma et al., 2007a), power-law non-thermal electrons are usually present in plasma

(Yuan et al., 2002).

Described above model is extended in several ways, mainly with regard to magnetic

field. Isotropic MHD system of turbulent equations (2.27) describes the real box collisional

turbulence quite well, because it corresponds to convergent set of simulations. Collisionality

assumes that medium behaves like many particles with short-range interactions. However,

astrophysical medium of interest is always collisionless with prevailing long-range

interactions. I inconsistently use the results of numerical simulations of collisional MHD

(eqs. [2.1-2.6]) with magnetic resistivity νM on the order of viscosity ν, because the

realistic simulations of collisionless plasma turbulence are not done and are unlikely to be

done in the near future (Schekochihin et al., 2004).

Observations of astrophysical turbulence may give more information than numerical

simulations. A special case of collisionless plasma is plasma with random kinetic energy

much smaller than random magnetic energy. This regime is a good picture of Sun corona

with all plasma effects into play (Aschwanden, 2005). Dissipation of magnetic loops with

low kinetic energy proceeds mainly via reconnections. The timescale of reconnective

dissipation was found to be

τrec ≈ 20
L

vA
(2.69)

in solar flares (Noglik et al., 2005). The same number was also predicted by Lazarian &
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Vishniac (1999). Collisional MHD turbulence has much smaller dissipation timescale

τdiss ≈ 1
L

vA
(2.70)

(eqs. [2.27, 2.35]). Plasma has large kinetic energy in the outer region of accretion flow,

where turbulence is externally supported. Timescale τdiss (eq. [2.70]) may be appropriate

there. Kinetic energy EK decreases to smaller radii and magnetization σ increases

(Fig. 2.2) in case of zero angular momentum (2.4.1). Accretion flow there may resembles

solar Corona (Aschwanden, 2005). Dissipation timescale may increase order of magnitude

and be close to τrec (eq. [2.69]). This increase would lead to much lower accretion rate,

because higher magnetic field leads to lower Ṁ. Matter infall may eventually proceed

through channels of lower magnetic field (Igumenshchev, 2006).

Even if I assume that box isotropic turbulent system of equations (2.27) with

coefficients (2.35) is applicable to isotropic turbulence, there are at least four complications

in building the full anisotropic theory.

First of all, I need to introduce arbitrary coefficients cuB2, cBB2, cBu2 to describe

isotropization of anisotropic magnetic field and anisotropic energy transfer between

magnetic field and fluid motions. Reasonable values of these coefficients were taken to

satisfy rather loose analytical tests (Appendix 2.8). However, changes in these coefficients

do not lead to dramatically different accretion rate or flow structure. Setting cBB2 = cBB1

instead of cBB2 = 0 leads to only 10% of Ṁ change for the reference model. All seven

introduced coefficients cxx may themselves depend on anisotropy of the magnetic field.

The details of anisotropic MHD are still debatable (Goldreich & Sridhar, 1995; Boldyrev,

2006). I leave the incorporation of anisotropic MHD model into accretion theory for future

work.
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Secondly, the presented theory is not general relativistic. Accretion rate Ṁ appears to

be insensitive to the choice of gravitational potential. The condition on Ṁ is set at about

103rg in case of relativistic EOS and zero angular momentum l. Sonic point is situated

close to the black hole at rs = 5 − 10rg for non-relativistic equation of state. But 1%

increase of Ṁ leads to the sonic point at rs > 100rg, independent of the way to mimic

general relativity. However, the region near the black hole is important, because part of

synchrotron IR radiation as well as part of radio emission comes from several Schwarzschild

radii (Narayan et al., 1998; Falcke & Markoff, 2000; Marrone et al., 2007). Thus, to fully

constrain theory by observations general relativistic magnetohydrodynamics is a must.

In third, magnetic helicity H involves numerous complications. Magnetic helicity

evolves in the region that is frozen into matter. The distance L|| between radial boundaries

of this region is proportional to inflow velocity v, thus L|| increases with increasing v and

at some point L|| > r, whereas size in the angular direction is about L = γr. A part of

the region is getting sucked into the black hole, while a part is still situated at fairly large

radius r. Equation of magnetic helicity evolution (2.52g) holds only if I assume even

redistribution of magnetic helicity over the mass of plasma. This holds for frozen magnetic

field, but in reality diffusion and convection are present. Diffusion may change the results

for H (eq. [2.52g]) as well as for the entire flow pattern. I also leave these uncertainties for

future research.

In fourth, it was recently suggested by Beskin & Karpov (2005) that ions and electrons

should be viewed in accretion as confined by magnetic field lines. This is the opposite of

standard picture where magnetic field lines are frozen into matter (Scharlemann, 1983).

The former case has higher heating rate of matter under contraction (Beskin & Karpov,

2005), because of conservation of the first adiabatic invariant I = 3cp2t /(2eB) = const
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(Landau & Lifshitz, 1975). Here pt is a particles momentum in the direction perpendicular

to B. However, only highly magnetized flows with magnetization σ > 1 conserve I.

Non-linear collective interactions of particles in low-σ plasma are likely to isotropize

their distribution. When particles are heated isotropically under contraction, general

Magneto-Hydrodynamics (eqs. [2.1-2.6]) works (Landau et al. , 1984) and heating

rate stays unchanged. Magnetization in computed models is below unity (Fig. 2.3a

and Fig. 2.6a). Thus application of first adiabatic invariant conservation to magnetized

accretion flow seems irrelevant.

Finally, mean rotation of the flow also creates anisotropy. Because the inner gas

rotates faster than the outer, MagnetoRotational Instability (MRI) works. It produces the

additional driving of magnetic field that may be concurrent to other sources. MRI (Hawley

& Balbus, 2002) has a timescale

τMRI = −
(
r
d(l/r2)

dr

)−1

. (2.71)

When MRI timescale becomes larger then dynamic timescale τdyn = r/v, field amplification

occurs mainly because of regular shear tangential motion, instead of regular radial motion.

MRI may be crucial even in the region without rotational support. Full consideration of

effects of angular momentum on the flow is the subject of the next study.

2.5.3 Radiative Cooling

The system of equations (2.52) describes the accretion flow, where all the energy

is stored in the same piece of matter where it initially was. There is no energy loss by

diffusive or radiative cooling. But whether such a model is realistic.

Let me estimate the radiative cooling first. Line cooling is more effective than
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bremsstrahlung cooling for temperatures about T∞ ≈ 1.5 × 107K. Line cooling function

is Λ ≈ 6 × 10−23n2(T/107K)−0.7 erg cm−3 s−1 (Sutherland & Dopita, 1993). Thus

characteristic cooling time τcool is

τcool =
3RTρ

2Λµ
≈ 1× 1012s (2.72)

for our Galactic Center accretion. The dynamic timescale τdyn = r/v for accretion with

rate Ṁ = 0.1ṀB (eq. [2.66]) is

τdyn =
ρr3

Ṁ
≈ 5× 1010s (2.73)

with continuity equation (2.9) at radius r = rB (eq. [2.54]). Cooling time is about 20 times

larger than inflow time in the region where outflows dominate. Nevertheless, anisotropy

of stellar winds may lead to significant cooling of some clumps of matter (Cuadra et al.,

2005). Even the disk may form (Cuadra et al., 2006). Careful calculation with line cooling

is yet to be done.

2.5.4 Convection & Diffusion

The system (2.52) does not include diffusive or convective transport of quantities.

Thus the system represents Advection-Dominated flow, where magnetic field and gas

can exchange energy between each other. The exact model would include transport of

momentum, energy, magnetic field, magnetic helicity that may or may not influence the

dynamics.

First or all, any type of convective or diffusive motion would happen at a speed vc not

exceeding the maximum of turbulent speeds, radial Alfven speed vc < vAr. This leads to

the transition from convection dominated to advection dominated flow at several dozens
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rg in the case with rotation (Abramowicz et al., 2002). Correspondingly, inflow speed v

becomes large vc ∼ v (Gammie & Popham, 1998). Transport becomes ineffective at r . rA,

where rA is the radius of Alfven point. According to Fig. 2.2a, Alfven point in my spherical

solutions lies at rA ∼ 0.03rB. Thus diffusion and convection are strongly suppressed in

the inner flow. By the same reason, magneto-thermal instability (MTI)(Parrish & Stone,

2005) is not supposed to play any role for spherical inflow, but may play a role in a case

with rotation. For the non-conductive convective stability criterion see Appendix 2.10.

However, speed of electrons ve may overcome the speed of sound cs, so electron

conduction may in principle transport energy from within rA (Johnson & Quataert, 2007).

It is yet unclear whether electron conduction is suppressed at high inflow velocity v > vAr,

because electrons may be bound to the field lines of tangled magnetic field. The efficiency

of conduction is a free parameter. If efficiency is close to maximum and conduction is not

inhibited, then accretion rate may be 1− 2 orders of magnitude lower than Bondi rate ṀB

(Johnson & Quataert, 2007), thus accretion rate would be limited by conduction and not

by backreaction of the magnetic field. Other types of energy transport (Parrish & Stone,

2005) may kick in for lower accretion rates. The correct calculation with magnetic field

and better prescription for conductivity is yet to be done.

2.5.5 Equation of State

The difference in accretion rate Ṁ between one-temperature relativistic and 1-T

non-relativistic EOSs is up to 40% for maximum-rate solution (subsection 2.4.1) and up to

several times for solution with effective angular momentum transport (subsection 2.4.2).

Solution with smaller gas adiabatic index Γ has larger accretion rate Ṁ (Shapiro &
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Teukolsky, 1983). Gas adiabatic index gradually falls from Γ = 5/3 to Γ = 1.43 in case of

relativistic EOS as matter approaches the black hole.

However, the electron temperature Te is unlikely to be equal to ion temperature Ti.

Electron temperature Te is usually modelled to be lower than Ti (Narayan & Yi, 1995).

This two-temperature model has lower gas pressure support and larger gas adiabatic index

Γ than 1-T model with T = Ti. Lower gas pressure leads to higher accretion rate, larger Γ

leads to lower accretion rate. The combination of these two effects is expected to change

the accretion rate by about the same 40% as between relativistic and non-relativistic 1-T

EOSs. The exact details depend on the two-temperature model chosen.

2.6 Observations

Proposed quasi-spherical magnetized accretion model is aimed to explain plasma flow

onto SuperMassive Black Hole Sgr A* in our Galactic Center. Many observations of this

source are made. These observations reasonably agree with the results of my model.

A common misconception about Chandra X-Ray observations of Sgr A* exists in

literature. X-Rays mainly originate in the region that lies further than Bondi radius rB

from the central object. Thus characteristic density ρ∞ and temperature T∞ far from

the Black Hole can be found (Baganoff et al., 2003). If one knows the mass M , this

automatically gives Bondi accretion rate ṀB (eq. [2.66]). However, accretion rate is not

necessarily determined by this formula (2.66), unlike some papers suggest (Bower et al.,

2005). In my model accretion rate Ṁ is independent on radius and is smaller than ṀB.

IR (Eckart et al., 2006a) and Radio (Shen, 2006) observations are difficult to interpret,
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because fluxes in these wavebands depend strongly on the accretion model. Density

of matter ρ is better constrained by observations than accretion rate Ṁ. The general

agreement (Yuan et al., 2002) is that density ρ should be lower than in Bondi solution

ρB in the region close to the black hole. Solutions with outflows (Yuan et al., 2003) and

Convectively-Dominated flows (Quataert & Gruzinov, 2000a) were invented to explain this

lower density. Magnetized solution without angular momentum does well the same job.

Let me consider the reference magnetized model with σ∞ = 1, γ = 1, ξ∞ = 0.025, l = 0,

1-T relativistic equation of state. The ratio of density in a reference magnetized model to

density in a non-magnetized solution is

ρmagn

ρnonmagn
≈ 0.27 at 10rg. (2.74)

Density in a magnetized model is much lower than in a non-magnetized one. However,

all types of models can be made to fit the data by adjusting temperature (Quataert &

Gruzinov, 2000b), whether advection dominated or convection or outflow dominated.

Faraday rotation of submillimeter radiation offers a good differentiation mechanism

between ADAF flows and flows with outflows or convection. Rotation measure is

proportional to both magnetic field and electron density and has a relativistic temperature

factor (Marrone et al., 2007). Model B predicts magnetization σ = 0.7 and number

density n = 2 · 107cm−3 at 3rg that is consistent with (Hawley & Balbus, 2002). The

observed Faraday rotation measure is RM = −6 · 10−5rad m−1. (Marrone et al., 2007).

Fitting the relativistic rotation measure for temperature gives Te = 4 · 1010 K in excellent

agreement with (Sharma et al., 2007a). Accretion rate in the reference model is about

9 · 10−7M⊙year
−1, what is 30 times lower than in (Sharma et al., 2007a). However, the

electron density in my model is close to that in the rotating model (Sharma et al., 2007a),

because inflow velocity in the rotating model is α times lower. For densities to agree I need
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α ∼ 0.03 that is somewhat smaller than found in numerical simulations α & 0.2 (Hawley

& Balbus, 2002). This means my solution overestimates density n by about a factor of

5, what results in larger then observed IR flux (Eckart et al., 2006a). Effects of angular

momentum transport, outflows (Yuan et al., 2002) or conduction (Johnson & Quataert,

2007) must come into play to allow for successful fitting for both IR flux and Faraday

rotation measure.

2.7 Conclusions

Though many ways of dealing with inefficient accretion were invented, my approach is

substantially different from all previous efforts. I elaborated the model that

• has very few free parameters,

• self-consistently includes averaged turbulence, combining geometrical effects of

freezing-in amplification with dissipation,

• ties evolution of random magnetic field and random velocity field to numerical

simulations,

• connects outer externally supported turbulence to inner self-sustained turbulence,

• predicts the accretion rates Ṁ and flow patterns for the flows with negligible angular

momentum,

• gives the order of magnitude estimate of Ṁ for large angular momentum flows.

The model predicts

• accretion rate Ṁ of magnetized fluid 0.2− 0.7 of Bondi rate ṀB even for small outer

magnetization σ∞,
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• subequipartition magnetic field in the outer part of the flow and superequipartition

in the inner part,

• several times lower density than in Bondi model near the central object, what with

addition of other effects would explain the observations of Sgr A*,

• half an order of magnitude effect of different equations of state on the accretion rate,

• unimportance of magnetic helicity conservation,

• ineffectiveness of convection. Convection and diffusion should be accounted for

together.

The future version of the model will include

• more anisotropic effects, in particular, magneto-rotational instability,

• two-temperature equations of state,

• full treatment of angular momentum transport,

• diffusion of momentum, heat and magnetic field.
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2.8 Appendix: Analytical Tests

Let me consider my model in anisotropic incompressible case of box turbulence. I

substitute −v∂/∂r = d/dt in equations (2.22), (2.23), (2.26) and set r = const. The box
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has infinite volume. I express some of unknown cxx in terms of known ĉxx from equations

(2.28). The system now reads

d(v2Ar)

dt
=

(ĉBuv
2
Ar + 2cBu2(vA⊥ − vAr)vAr)u− (

√
3ĉBBvAr + 2cBB2(vA⊥ − vAr))v

2
Ar

L
,

(2.75a)

d(v2A⊥)

dt
=

(ĉBuv
2
A⊥ + cBu2(vAr − vA⊥)vA⊥)u− (

√
3ĉBBvA⊥ + cBB2(vAr − vA⊥))v

2
A⊥

L
,

(2.75b)

d(u2)

dt
=

(ĉuB(v
2
Ar + 2v2A⊥)− cuB2(vAr − vA⊥)

2)u− cuuu
3

L
. (2.75c)

I need to determine three coefficients cBB2, cuB2, and cBu2 and prove the entire system

(2.75) makes sense.

There are three kinds of analytical tests divided by the degree of their certainty. The

tests from the first group have solid physical grounds. The tests from the second group

represent how turbulence is believed to work, these are the general relations with clear

physical insight. The third group of tests consists of the order of magnitude relations and

the disputable ideas.

The tests of the first group are proven to work. Only one test of this kind can be

applied to our system. This is the energy decay test. Free incompressible MHD turbulence

has decreasing with time total energy, because energy decrease corresponds to the increase

of entropy of the system gas/magnetic field (Landau et al. , 1984).

d

dt

(
v2Ar + 2v2A⊥ + u2

2

)
< 0 for at least one of vAr, vA⊥, u non− zero. (2.76)

I take sum with proper coefficients of the right-hand sides of system (2.75). Then I

maximize it with respect to vA⊥/vAr and vA/u. I find that when

2cBu2 + cuB2 ≥ −2.2, (2.77)
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total energy decreases with time for any non-zero vAr, vA⊥, and u. Let me remind the

reader that all these velocity are non-negative according to definitions (2.24). Condition

(2.77) is weak. Some tests from the second and the third categories constrain cuB2 and

cBu2 better, thus making equation (2.77) valid.

The typical test of the second category deals with dynamo amplification of anisotropic

field. Dynamo action not only amplifies magnetic field, but also isotropizes it. I take

isotropization condition to be

d(vAr − vA⊥)

dt(vAr − vA⊥)
6 0. (2.78)

Taking expressions for derivatives from system (2.75) I arrive at

(ĉBu − 3cBu2)u−
√
3cBB2(vAr + vA⊥) + cBB2(2vAr + vA⊥) 6 0 (2.79a)

This condition should hold when any speed in inequality (2.79a) is much larger then two

others. Therefore, inequality (2.79a) is equivalent to

ˆcBu < 3cBu2, cBB2 <

√
3

2
ĉBB. (2.79b)

Another second category dynamo test states that magnetic field should always

increase, if dynamo operates without dissipation or any energy transfer. This occurs when

Alfven speeds are much smaller than turbulent velocity field u. Positive amplification

condition then reads

dv2Ar

dt v2Ar

> 0,
dv2A⊥
dt v2A⊥

> 0. (2.80)

Taking the expressions for derivatives from system (2.75) and applying the limit vAr ≪ u

and vA⊥ ≪ u I obtain that inequalities (2.80) are valid for any balance between vAr and

vA⊥ when

ĉBu > 2cBu2. (2.81)
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Inequalities (2.79b) and (2.81) give tight constrains on cBu2.

The similar test exists for the random velocity. Magnetic field is supposed to increase

the turbulent velocity in the limit vAr ∼ vA⊥ ≫ u. The correspondent condition

d

dt

(
u2

2

)
> 0 for vAr ∼ vA⊥ ≫ u (2.82)

reduces for system (2.75) to the condition of constant positive acceleration that initially

steady magnetic field applies to matter. Finally

cuB2 < ĉuB. (2.83)

Decay of isotropic MHD turbulence offers the following test of the second kind.

Numerical simulations show equality of magnetic field dissipation rate and random velocity

dissipation rate (2.33) when initial magnetic energy equals initial kinetic energy. However,

this equality should be stable, otherwise kinetic and magnetic energy would diverge from

each other after any perturbation and equality of u and vA would not have been observed.

Stability condition is

d(v2Ar + 2v2A⊥ − u2)

dt (v2Ar + 2vA⊥ − u2)
< 0 (2.84)

for vAr = vA⊥ = u.

The are no more proven or justified assumptions I can make. I need to make use of

inequalities (2.77), (2.79b), (2.81), (2.83), and (2.84) and apply unjustified tests. I take the

value of cBu2 to be in the middle of the allowed interval

cBu2 =
1

2

(
1

2
+

1

3

)
ĉBu ≈ 0.29. (2.85)

The value of cuB is small compared to the values of other coefficients. There is no physical

sense in the sharp increase of u2 build-up when magnetic field becomes anisotropic that
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would be the case for cuB2 ≪ (−ĉuB) Turbulent velocity may be expected to increase

regardless of the direction of magnetic field in equation (2.75c). This idea leads to

|cuB2| < ĉuB. I take

cuB2 = 0 (2.86)

for the simple estimate. Similar estimate allows me to set

cBB2 = 0. (2.87)

In this case isotropization of magnetic field has a timescale about the dissipation timescale.

2.9 Appendix: Self-Similar Solution

Let me describe the self-similar solution, when the differential system of equations

(2.52) can be reduced to the algebraic system. I set the proper scalings of quantities

with radius and make weak additional assumptions. I introduce the standard

dimensionless variables T (x), ρ(x), L(x), aa(x), bb(x), pp(x), vel(x) to replace, respectively,

T (r), ρ(r), L(r), u(r), vAr(r), vA⊥(r), v(r) as follows:

T (r) = T∞T (x), v(r) = vel(x)

(
2RT (x)

µ

)1/2

, L(r) = (r/x)L(x), (2.88)

u(r) = aa(x)

(
2RT (x)

µ

)1/2

, vAr(r) = bb(x)

(
2RT (x)

µ

)1/2

,

vA⊥(r) = pp(x)

(
2RT (x)

µ

)1/2

.

Radius is normalized to Bondi radius (eq. [2.54]) as r = rB x. The natural power-law

radial dependencies of these quantities (2.88)

3T (x) = TSSx
−1, vel(x) = vSSx

−1/2, L(x) = γ, (2.89)
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aa(x) = uSSx
−1/2, bb(x) = vArSSx

−1/2, pp(x) = vA⊥SSx
−1/2

make my system of equations (2.52) independent of x under the following restrictions:

• gravity is Newtonian,

• external turbulence driving is negligible,

• equation of state is non-relativistic.

These assumptions are valid in the intermediate region 103rg . r . 0.1rB. Gravity is

Newtonian for r ≫ rg. Turbulence driving is mainly internal for r . 0.1rB (see subsections

(2.4.1), (2.4.2) and Fig. 2.1b, Fig. 2.5b). Electrons become relativistic at around 103rg.

The found range of r where all above assumptions hold is small. I can instead consider

a non-relativistic equation of state with w = wNR (eq. [2.52c]) everywhere. This makes

standard self-similar solution possible from 0.1rB down to several Schwarzschild radii rg.

Dimensionless magnetic helicity ξ appears to be constant in self-similar regime.

Relations (2.52h), (2.52g), and (2.46) lead to

ξ =
3σ∞

4TSS(v2ArSS + 2v2A⊥SS)
ξ∞. (2.90)

Continuity equation (2.52a) can be used to obtain the scaling of density ρ ∼ x−3/2. Heat

balance equation (2.17) reduces to the equality of radial and total perpendicular magnetic

fields

v2ASS = 2v2A⊥SS . (2.91)

Euler equation (2.52b) gives the formula for self-similar temperature

TSS = 5/(15 + 10u2SS + 9v2ArSS + 6v2A⊥SS + 6v2SS). (2.92)
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Turbulence evolution equations (2.22), (2.23), (2.26) are now treated without source terms.

They give, correspondingly, three relations

2uSSvArSScBu11 − 2v2ArSScBB11 exp(−ξ) + 4uSScBu22vA⊥SS + 3vArSSvSSγ = 0, (2.93)

2uSS(vArSScBu22 + (cBu11 + cBu22)vA⊥SS)− vA⊥SS(2cBB11 exp(−ξ)vA⊥SS + 3vSSγ) = 0,

−u2SScuu + cuB11 exp(−ξ)(v2ArSS + 2v2A⊥SS) = 0,

where definitions of Alfven and turbulent velocities (2.24) are used.

Let me first set magnetic helicity to zero ξ = 0 and consider four equations (2.91) and

(2.93) on four velocities vSS , uSS , vArSS , vA⊥SS . The only solution of this system has all

the velocities identical zeroes. No self-similar solution is possible for zero magnetic helicity

ξ.

However, the non-linear algebraic system of equations on ξ and velocities (2.90),

(2.91), (2.93) possesses a non-trivial self-similar solution. For the full system (2.52) I need

the additional condition to determine the accretion rate and solve for radial dependencies

of quantities. This condition is either condition for maximum accretion rate (2.64) or

condition for effective angular momentum transport (2.61). I can transform both into

self-similar form. Maximum Ṁ condition (2.64) reads

5 + 10u2SS + 12vA⊥SS = 6v2SS . (2.94a)

Effective angular momentum transport condition (2.61) gives√
5/3 vSS

4vArSS vA⊥SS

√
TSS

≤ 1 (2.94b)

regardless of circularization radius rcir.

Let me first find the self-similar solution in case of large angular momentum. I solve

equality in relation (2.94b) and 5 equations (2.90), (2.91), (2.92), (2.93) for 7 quantities ξ,
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TSS , uSS , vArSS , vA⊥SS , γ vSS , and the product σ∞ξ∞. I normalize the results to free-fall

velocity (eq. [2.67]) to be able to directly compare with the numbers on Figure 2.5b:

cs(r)

vff (r)
= 0.58,

u(r)√
3vff (r)

= 0.0094,
vAr(r)

vff (r)
= 0.041, (2.95)

vA⊥(r)

vff (r)
= 0.029,

v(r)

vff (r)
= 0.0033, σ∞ξ∞ = 0.00718

for r ≫ rg. Figure 2.5b shows profiles of velocities for the reference model with σ∞ = 1,

ξ∞ = 0.025, γ = 1. The actual velocities on the inner boundary at r = 3× 10−4rB = 90rg

are

cs(r)

vff (r)
= 0.58,

u(r)√
3vff (r)

= 0.0033,
vAr(r)

vff (r)
= 0.076, (2.96)

vA⊥(r)

vff (r)
= 0.024,

v(r)

vff (r)
= 0.0051.

The reference model has σ∞ξ∞ = 0.025 about 3 times larger than in self-similar solution

(2.95), magnetic field in the reference model is stronger. Therefore, higher values of all

characteristic velocities are expected in the actual solution (2.96). I obtain inflow velocity

v and radial Alfven speed vAr correspondingly 1.5 and 1.8 times higher for solution (2.96).

Sonic speeds are the same in self-similar (2.95) and actual (2.96) solutions, because almost

all gravitational energy goes into thermal energy in both cases. However, perpendicular

Alfven velocity vA⊥ and turbulent velocity u do not qualitatively agree with self-similar

solution. They are correspondingly 1.2 and 2.8 times lower in the actual solution (2.96).

The naive estimate for accretion rate is

4πρ∞v(rB)r
2
B ≈ 0.05ṀB. (2.97)

This appears to be 8 times larger than the actual accretion rate 0.0061ṀB. Velocity

near Bondi radius (eq. [2.54]) is much smaller than self-similar value, what leads to an

overestimate of Ṁ. Thus, self-similar solution can give an order of magnitude estimates for
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all characteristic velocities of the flow and even for accretion rate Ṁ. However, self-similar

solution has only 2 free parameters instead of 3, because σ∞ξ∞ is treated as one constant.

Therefore, solution of the full system (2.52) is required to probe the entire parameter space

and to achieve more precise results.

Self-similar solution in case of maximum rate flow with condition (2.94a) does not

exist. The formal solution of equations (2.94a), (2.90), (2.91), (2.93) leads to negative

product σ∞ξ∞. The absence of self-similar solution in this case is reasonable, since the

actual solution does not exhibit self-similar scalings (Fig. 2.1b).

2.10 Appendix: Convection

Let me elaborate the stability criterion against convection in my model. As I noted in

the main text (subsection 2.5.4), small scale perturbations of quantities are smeared out

by diffusion. Thus high-frequency analysis by Scharlemann (1983) is not appropriate to

determine the convective stability. Timescale of diffusion τdiff is

τdiff ∼ h

u
, (2.98)

where l is the scale of perturbation. As h decreases, diffusion time also decreases and

becomes smaller than perturbation growth timescale τgrow. If τdiff < τgrow, convection is

ineffective that is likely to happen at small scales h. Thus I need to consider the motion of

the large blobs of the size h ∼ L.

I consider a blob of plasma displaced at some small ∆r from its equilibrium position

(Fig. 2.7). The density of the blob itself changes by ∆ρblob, when it is moved. The density

of outer medium changes by ∆ρfluid between two positions of the blob. The goal is to
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Figure 2.7.— Scheme of convection. Large magnetized blob is in perpendicular and radial

pressure balance. Energy does not dissipate inside the blob.
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calculate the difference in density differences ∆ρfluid −∆ρblob between the outer medium

and the blob. Positive difference ∆ρfluid−∆ρblob > 0 for positive ∆r > 0 implies convective

instability. Rising blob of gas is rarified compared to the fluid and buoyant. The results

for ∆ρ may be affected by external driving that is somewhat artificial in my model. Thus I

need to calculate ∆ρ in the inner accretion region where external driving is not important.

Motion of the blob is adiabatic and governed by the same adiabatic dynamical equations

(2.52b) and (2.52c), as the rest of the fluid. I neglect energy, associated with gas regular

velocity v. Term v2 cannot be neglected only in the region, where v approaches sound

speed cs. However, convection ceases if v ∼ cs (Narayan et. al., 2002). I denote by index A

physical quantities in the blob and by index F quantities in the rest of the fluid.

Euler equation (2.52b) results in the following equations on differences in the blob

R

µ
∆A(ρT ) +

1

3
∆A(ρu

2) +
1

r2
∆A(r

2ρv2A⊥)−
1

2r4
∆A(r

4ρv2A) = 0 (2.99a)

and in the fluid

R

µ
∆F (ρT ) +

1

3
∆F (ρu

2) +
1

r2
∆F (r

2ρv2A⊥)−
1

2r4
∆F (r

4ρv2A) = 0. (2.99b)

In both equations I take variations between quantities at r +∆r and r. I introduce the

difference operator

∆() = ∆F ()−∆A() (2.100)

and calculate the variations of all quantities between the fluid and the blob. Subtracting

equation (2.99b) from equation (2.99a), I find the radial pressure balance in the first order

in ∆r

R

µ
∆(ρT ) +

1

3
∆(ρu2) + ∆(ρv2A⊥)−

1

2
∆(ρv2A) = 0. (2.101)

Blob of plasma should be in equilibrium also in perpendicular direction, not only in

radial direction. I use the same technique to deduce it, as I used to derive the radial force
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equation (2.13) from general momentum equation (2.3). Component θ of magnetic force

in equations (2.2) and (2.3) reads Fθ = [B× [∇×B]]θ/(4πρ). I subtract Bθ(∇×B)/(4πρ)

from it and average over ϕ direction. I obtain

Fθ =
(B2

r )
′
θ

8πρr
(2.102)

for B2
θ = B2

ϕ and BrBθ = 0 on average over ϕ. The final form of force balance in θ direction

is

∂

∂θ

(
R

µ
ρT +

1

3
ρu2 +

1

2
ρv2A

)
= 0. (2.103)

Perpendicular force balance (2.103) has the same form in any direction perpendicular to

the radial vector owing to the symmetry of the problem. I apply operator ∆ (eq. [2.100])

to the integral form of perpendicular pressure balance and get

R

µ
∆(ρT ) +

1

3
∆(ρu2) +

1

2
∆(ρv2A) = 0. (2.104)

Heat balance equation (2.17) gives the third relation

R

µ

(
3

2
∆T − ∆ρ

ρ
T

)
+

(
u∆u− u2

3

∆ρ

ρ

)
+ ρ∆

(
v2A⊥
ρ

)
+

1

2ρ
∆(ρv2A) = 0. (2.105)

Expansion or contraction of a blob is non-uniform. Perpendicular b and parallel a

sizes (Fig. 2.7) deform in different ways. Continuity equation for the fluid (2.9) can be

written as

∆Fρ

ρ
+

∆F v

v
+ 2

∆r

r
= 0 (2.106a)

I consider the parcel with constant mass m = ρV. Therefore

∆Aρ

ρ
+

∆a

a
+ 2

∆b

b
= 0 (2.106b)

is the continuity relation for the parcel. Finally I subtract equation (2.106a) from equation

2.106b and obtain

∆ρ

ρ
+

∆v

v
+ 2

∆r

r
− ∆a

a
− 2

∆b

b
= 0 (2.107)
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for the change of density according to definition (2.100). Inflow velocity v is clearly

associated with the fluid, but I omit subscript F at v. I also omit subscript A at dimensions

of the blob.

Now I need to quantify the variation of the turbulent magnetic field and the random

velocity. I assume that the blob moves at a speed V (r) much higher than the inflow

velocity V (r) ≫ v(r), therefore magnetic field does not dissipate in the parcel. Differences

of turbulence evolution equations (2.52d), (2.52e), and (2.52f) are

2u∆u− 2

3
u2

∆ρ

ρ
=

∆r

vL
(cuuu

3 − cuB11(v
2
A + 2v2A⊥)u exp(−ξ)) (2.108a)

∆(ρv2A) + 4ρv2A

(
∆r

r
− ∆b

b

)
=
ρ∆r

vL
(cBB11v

3
A exp(−ξ)− (cBu11v

2
Ar + 2cBu22vArvA⊥)u)

(2.108b)

∆(ρv2A⊥) + 2ρv2A⊥
(
∆r
r + ∆v

v − ∆a
a − ∆b

b

)
= (2.108c)

= ρ∆r
vL (cBB11v

3
A⊥ exp(−ξ)− ((cBu11 + cBu22)v

2
A⊥ − cBu22vArvA⊥)u).

Magnetic helicity variation does not directly influence the dynamics of the blob.

Solving the system of 7 equations (2.101), (2.104), (2.105), (2.107), (2.108abc) on 7

quantities ∆T,∆ρ,∆vA,∆vA⊥, ∆u,∆a,∆b, I obtain

∆ρcorrect
ρ∆r

≈ (2.109)

vAr
2.02 exp(−ξ)vArvA⊥(vAr + 2vA⊥)− u(0.39(v2ArvA⊥ + v3A⊥) + vAr(1.21v

2
A⊥ − 0.63u2))

c2sLv(v
2
Ar + v2A⊥)

.

The actual expression is much longer. I take only the largest terms in the numerator and

the denominator.
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Let me compare this result (eq. [2.109]) with the naive estimate, when magnetic field

dissipation increases gas internal energy only (Bisnovatyi-Kogan & Ruzmaikin, 1974),

and gas pressure balance is used instead of parallel and perpendicular pressure balances

(2.101), (2.104). Gas pressure balance is

∆(ρT ) = 0. (2.110)

Naive heat balance (2.16) for the unit mass is

R

ρµ

(
3

2
ρ∆T − T∆ρ

)
≈ (2.111)

∆r

Lv
(0.41v2Aru+ 1.16vAruvA⊥ + 1.4uv2A⊥ − 3.03(v3Ar + 2v3A⊥) exp(−ξ)− 1.14u3)

Eliminating ∆T from relations (2.110) and (2.111), I find

1

ρ

∆ρnaive
∆r

≈
0.61(v3Ar + 2v3A⊥) exp(−ξ) + 0.23u3 − 0.82v2Aru− 0.23vAruvA⊥ − 0.28uv2A⊥

c2sLv

(2.112)

I evaluate the convective derivatives of density (2.109) and (2.112) in the inner region

of the reference solution with angular momentum transport (subsection 2.4.2). Parameters

of the reference model are ξ∞ = 0.025, σ∞ = 1, γ = 1, non-relativistic EOS. Correspondent

velocities are shown on Figure 2.5b. I take the values (2.96) of velocities and magnetic

helicity on the inner boundary of integration at r = 3× 10−4rB ≈ 90rg. Change of density

appears to be negative ∆ρ < 0 for ∆r > 0 in the result of full calculation (eq. [2.109]).

Naive calculation shows positive ∆ρ > 0 for ∆r > 0.

∆ρcorrect
∆ρnaive

≈ −0.2. (2.113)

Naive calculation suggests that the flow is convectively unstable, whereas the full

calculation under reasonable assumptions indicates a convectively stable flow.
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The calculated result (2.113) is applicable only to the inner regions of solution with

angular momentum transport (subsection 2.4.2). Excluded external driving is important in

the outer regions. In turn, solution with maximum accretion rate has large inflow velocity

v that approaches gas sound speed cs, and convection is suppressed (subsection 2.5.4). As

a bottom line, either flow appears to be convectively stable on average or convection is

suppressed in all calculated solutions without electron conductivity.

However, numerical simulations by (Igumenshchev, 2006) of non-rotating flows find

evidence of convection. This convection may be physical. My model averages heat from

all dissipation events over the fluid. Local reconnection events can lead to burst-type

local heating that leads to buoyancy of blobs. Also, magnetic buoyancy and diffusion

play important role in transfer processes (Igumenshchev, 2006). The correct inclusion of

convection, magnetic buoyancy and diffusion is the subject of future studies.



Chapter 3

Inflow-Outflow Model with

Conduction and Self-Consistent

Feeding for Sgr A*

Abstract

We propose a two-temperature radial inflow-outflow model near Sgr A* with

self-consistent feeding and conduction. Stellar winds from individual stars are considered

to find the rates of mass injection and energy injection. These source terms help to

partially eliminate the boundary conditions on the inflow. Electron thermal conduction

is crucial for inhibiting the accretion. Energy diffuses out from several gravitational

radii, unbinding more gas at several arcseconds and limiting the accretion rate to < 1%

of Bondi rate. We successfully fit the X-Ray surface brightness profile found from the
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extensive Chandra observations and reveal the X-Ray point source in the center. The

super-resolution technique allows us to infer the presence and estimate the unabsorbed

luminosity L ≈ 4 · 1032erg s−1 of the point source. The employed relativistic heat capacity

and direct heating of electrons naturally lead to low electron temperature Te ≈ 4 · 1010 K

near the black hole. Within the same model we fit 86 GHz optically thick emission and

obtain the order of magnitude agreement of Faraday rotation measure, thus achieving a

single accretion model suitable at all radii.

3.1 Introduction

Our Galaxy hosts a supermassive black hole (BH) with a mass M = 4.5 ·106M⊙ (Ghez

et al., 2008; Reid et al., 2008) at a distance R = 8.4 kpc. The BH exhibits low luminosity

state probably due to inefficient feeding and cooling. Almost all available matter outflows

from the region, whereas only the small fraction accretes (Quataert, 2004). This feeding

region within several arcseconds contains X-Ray emitting gas, but some X-Rays are

expected from a synchrotron self-Compton (SSC) or synchrotron source from accretion at

several Schwarzschild radii rg. The study of X-Rays offers a unique opportunity to test the

full range of accretion scales from several ′′ to rg = 10−5′′ and construct a single model.

Modeling the accretion flow with such a huge range of scales is a challenge. 3D SPH

simulations are performed in the outer region between 1′′ and 10′′ (Rockefeller et al., 2004;

Cuadra et al., 2008). Latest MHD simulations (Sharma et al., 2008) are limited to 3

orders of magnitude in radius and axial symmetry. Only the one-dimensional calculation

(Quataert, 2004) can in principle resolve the flow everywhere. Thus, 1D modeling is the

approach we adopt extending it down to the BH horizon.
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We analyze the quiescent observations (Muno et al., 2008) of X-Ray emission from

central several arcseconds around Sgr A* in §3.2. The total exposure is 25 times longer

compared to previously analyzed data (Baganoff et al., 2003). The super-resolution

processing based on spacecraft dithering helps resolving sub-pixel scales. The up-to-date

data on stellar wind emitters are summarized in §3.3. We smooth matter ejection rates

of individual stars over radius and sum them into a single feeding rate, also properly

averaging the wind velocity. This presents a significant improvement over an ad-hoc

feeding in Quataert (2004). The dynamical two-temperature equations are derived in §3.4.

We consider the electron conduction the main energy transport mechanism, approximating

the unsaturated heat flux by a simple formula. The Bondi flow (Bondi, 1952) without heat

transport overestimates the X-Ray luminosity by a factor of 103. The other important

effects considered are the relativistic heat capacity of electrons and superadiabatic heating

equivalent to entropy production. The ways to solve the resulting system of equations and

corresponding results are presented in §3.5. We employ the shooting method and find the

minimum χ2 fit for X-Ray surface brightness profile, simultaneously fitting 86 GHz flux.

The best fit model requires X-Ray point source. The viability of a non-cooling radial flow

is examined.

3.2 Observations

Central several arcseconds of the Galaxy were observed quite often over the past

several years. The rich region contains point sources identified as X-Ray binaries (Muno

et al., 2009) and extended emission features (Muno et al., 2008) together with the source

coincident with Sgr A*. The latter is expected from hot accreting gas, and source confusion
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Figure 3.1.— Chandra image of central 6” around Sgr A*. Point sources and strong extended

features are subtracted.
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is practically impossible (Baganoff et al., 2003). Sgr A* source exhibits significant

X-Ray flares associated with the SSC mechanism (Baganoff et al., 2001) or synchrotron

(Dodds-Eden et al., 2009). We are interested in quiescent emission, so we exclude the

flaring state. We bin the observations in 628 seconds as a compromise between the time

resolution and the number of counts. About 4 photons on average are received during 628

seconds and we take only the observations with less than 15 photons, thereby accumulating

953 ks in the quiescent state. The quiescent state also produces some point source

X-Rays, likely associated with SSC (Moscibrodzka et al., 2009). We model these by a

PSF-broadened central point source. We eliminate the emission from the point sources and

bright extended sources offset from Sgr A* (see Figure 3.1). The bright extended emission

may arise from the colliding winds of two strong close emitters or from the collision of hot

outflowing material with cold molecular material. We exclude both effects from modeling

of an averaged flow pattern.

We construct the surface brightness profile in counts per pixel squared for the duration

of observation as a function of distance from the BH. The size of Chandra pixel is 0.5′′,

which may seem to pose a limit on radial binning of brightness profile. However, the

position of satellite is not steady over the duration of observations, but is findable with

the 0.1′′ accuracy by comparing with the known positions of bright point sources. Then

we can achieve 0.1′′ super-resolution accuracy in surface brightness profile from knowing

the orientation of the detector pixels at any given time. The final profile is shown on

Figure 3.2 (error bars) together with the point-spread function (PSF) (dashed) found from

the nearby point source J174540.9-290014 (Muno et al., 2009). The PSF is scaled to match

the contribution from the point source. The counts cease to be monotonic at about 5′′ due

probably to the production of X-Rays in collisions of cold and hot regions. Therefore, only
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radiation within the central 5′′ is to be modeled. As we are interested in how symmetric

the surface brightness profile is, we divide the emitting region into 4 sectors 90 deg each

centered on Sgr A* and extract the surface brightness profile in each sector. The standard

deviation of counts between sectors is below 2σ the noise within 5′′, but rises to several σ

outward from 5′′. This justifies our choice of the outer radiation boundary and proves the

applicability of the radial model. Let us now look in more details on manufacturing of the

X-Ray emitting gas.
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Figure 3.2.— Observed radial surface brightness profile (error bars), best fit (solid) and the

point source contribution to emission (dashed). The point source contribution is the scaled

PSF.
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3.3 Stellar Winds Feeding

The Galactic Center region has a concentration of massive Wolf-Rayet and blue giant

stars, expelling strong winds from their surfaces (Martins et al., 2007). As the strongest

wind emitters are usually the brightest stars, all wind emitters are easily identifiable. We

take the latest data on ejection rates and velocities (Martins et al., 2007; Cuadra et al.,

2008) and complement them with the orbital parameters of stars (Paumard et al., 2006;

Lu et al., 2009). Following Cuadra et al. (2008), we minimize eccentricities for the stars

not belonging to the stellar disks as identified by Lu et al. (2009). The wind speeds vw and

ejection rates are taken directly from Cuadra et al. (2008).

There are several ways to treat the winds. Rockefeller et al. (2004) performed a

simulation with winds from steady stars, whereas Cuadra et al. (2008) considered moving

stars. In both cases the time to reach the quasi-steady solution 300−1000 yrs is comparable

to or longer than the orbital period at the stagnation point 350 yrs. Thus, it is reasonable

to average over stellar orbits in a search for a steady-state prescription of feeding. We

reconstruct the full 3D orbits, but retain only the apocenter and pericenter distances for

the stars. We smooth the total wind ejection rate for each star over the radial extent of its

orbit and then smooth with the narrow Gaussian filter to eliminate the divergences at the

turning points.

We add the resultant feeding profiles together to obtain the total feeding rate as a

function of radius (see Figure 3.3). We square average the wind velocities weighing the

contribution of each star by its mass loss rate. However, the winds also acquire the velocity

of a star as viewed by a distant observer. We neglect stars’ proper motions in calculations

of wind energy. They are negligible at several arcseconds, but would rather contribute to
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the angular velocity of matter within 1′′, where feeding is dominated by few stars. The

dependence of the averaged wind speed on radius is shown on Figure 3.3. Quataert (2004)

assumed the power-law mass injection rate q(r) ∝ r−η for r ∈ [2′′, 10′′]. The power-law

index η = 2 corresponds to zero slope of Ṁ(r) ∝ r2q(r) (see Figure 3.3) and agrees better

with the present calculations, whereas their choice of constant wind velocity does not agree

with the present estimate.

We also incorporate S02 star (Martins et al., 2008) into the calculations. The mass

loss rate ṀS02 = 6 · 10−8M⊙year
−1 of S02 is taken to coincide with that of τ Sco. S02

has a spectral type B0 − 2.5V and a mass M ≈ 16M⊙ (Mokiem et al., 2005; Martins et

al., 2008), whereas τ Sco has a very close type B0.2V and a mass M ≈ 15M⊙ (Mokiem

et al., 2005). The inferred accretion rate onto the black hole (Sharma et al., 2007a,b)

3 · 10−8M⊙year
−1 is actually smaller than ṀS02, thus the whole accreted material can in

principle be provided by a single weak wind emitter. This result is very different from

Cuadra et al. (2008), who assumed all the matter accretes from the inner boundary of the

simulation, thus obtaining in a simplified treatment a much larger accretion rate. However,

the direct feeding mechanism (Loeb, 2004) by S02 does not work, as its revised ṀS02 is

much below the value required for feeding without the angular momentum. In turn, the

direct feeding by IRS 13E3 (Moscibrodzka et al., 2006) produces too large accretion rate

in the absence of conduction.
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3.4 Dynamical Equations

3.4.1 Energy Transport Mechanism

Radiatively inefficient flows can be mediated significantly by the energy transfer from

the inner regions to the outer (Blandford & Begelman, 1999; Johnson & Quataert, 2007;

Sharma et al., 2008). Such transfer happens in two distinct ways: via convection or via

diffusive energy transport. Convection is seen in numerical simulations. It happens via

Alfven instability (Igumenshchev, 2006) and magneto-thermal instability (MTI) (Sharma

et al., 2008) and modifies the density profile. Let us show that the electron heat conduction

wins over convection in the accretion flow. First, the MTI is driven by thermal conduction,

at any moment the electron conduction flux is larger then the MTI-induced heat flux.

Convection implies the motion of large-scale magnetized eddies, which in turn split into

smaller eddies and develop the whole turbulent cascade. In such settings the electron

conduction is only inhibited a factor of ∼ 5 (Narayan & Medvedev, 2001). The speed of

electrons is a factor of
√
mp/me larger than the sound speed and the convection is subsonic;

the same factor lowers the ion diffusive heat transport. The relative strength of convective

heat flux is proportional to the gradient of logarithmic entropy, which is normally weaker

than the proportionality to the gradient of logarithmic temperature of conductive flux.

Combining both effects we conclude that, if there is convection or diffusion, then there is

stronger conduction. Severe inhibition of electron conduction happens, if the turbulent

cascade does not develop and mixing is absent. This is not the case when the gas accretes.

The strength of turbulent magnetic field increases then in the convergent flow leading to

dissipation and effective mixing (Shvartsman, 1971; Shcherbakov, 2008a). It is reasonable

to think that the whole turbulent cascade develops and the electrons relatively freely find
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their way around magnetic field lines to connect the different regions of the flow. When the

electrons and ions get decoupled from each other, the ion entropy may get equilibrated by

convection, whereas the electron temperature levels due to conduction. The investigation

of this possibility is left for future research. In present chapter we take the energy transport

to happen solely via electron conduction.

There are several different regimes of conduction. First, the collisionality of the

flow changes from the large radii to the inner radii as the mean free path of particles l

exceeds the flow size r. As the flow gets only weakly collisional at several arcseconds,

the conductivity is well approximated by a collisionless formula with κ ∝ r. Another

assumption of the kind deals with the electron velocity. As electrons can get only mildly

relativistic, we take conductivity to be proportional to square root of electron temperature

κ ∝
√
Te, instead of proportionality to relativistic electron velocity κ ∝ vc (Johnson &

Quataert, 2007). When the gradient of electron temperature gets too large, the electrons

transport heat via a constant saturated flux, instead of the flux proportional to the

gradient of temperature (Cowie & McKee, 1977). We check a posteriori that the flow is in

an unsaturated heat flux regime. Finally, we have for the heat flux Q = −κkBdTe/dr

κ = 0.1
√
kBTe/mern, (3.1)

where n = ne is the electron density (Cowie & McKee, 1977).

3.4.2 System of Equations

Gravitational energy of gas in the potential of an accretor is the ultimate inflow

driver. It gets transformed directly in several types: kinetic energy of bulk toroidal and

radial motion, energy of turbulent magnetic and velocity fields, thermal energy. Turbulent
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energy can also originate from the toroidal shearing flow in a disk. Turbulence dissipates

into thermal motions of ions and electrons on the dynamical timescale, whereas ions and

electrons exchange energy by slow Coulomb collisions. The faster collective modes of

ion-electron energy exchange may exist, though they may not lead to equilibration of

temperatures (Shkarofsky et al., 1966). We do not separate the turbulent term or write an

equation on it for the purpose of current work, as its direct dynamical influence is smaller

than the influence of additional thermal energy produced via dissipation of turbulence

and entropy production (Shcherbakov, 2008a). Following Johnson & Quataert (2007), we

introduce the fractions fp and fe of changes of gravitational energy, which go directly

into thermal energy of ions and electrons, but relate them via a direct heating mechanism

(Sharma et al., 2007a). For the purpose of numerical stability we enhance Coulomb

collisions by a factor of 1000, which effectively makes ion and electron temperatures equal

at large distances from the BH, but does not influence Te near the BH. Let us convert the

qualitative ideas into equations.

The composition of plasma determines the exact balance of the black hole gravitational

pull and supporting gas pressure. Let us define the source function q, so that the ejected

mass of stellar winds per second is Ṁw =
∫
4π r2 q dr. We denote the electron density by

n = ne and write the continuity equation as

∂n

∂t
+

1

r2
∂(nvrr

2)

∂r
=
q(r)

µav
, (3.2)

where

µav ≈ 1.14 (3.3)

is the average atomic mass per one electron for assumed solar abundance of fully ionized

elements (Najarro et al., 2004). The ratio of number densities of atomic nuclei to electrons
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is

d = nnon−el/n ≈ 0.93. (3.4)

We write separate energy equations for electrons (e) and all ions (p) in terms of

cse =

√
kBTe
mp

and csp =

√
kBTp
mp

, (3.5)

assuming all ions have the same temperature. We set the speed of light equal unity c = 1

and normalize to it all velocities. The ideal gas law gives normalized gas pressure

pgas = pp + pe = n(c2se + d · c2sp) (3.6)

to be substituted into the Euler equation

Dvr
Dt

+
1

nµav

∂pgas
∂r

+
rg

2(r − rg)2
+
q(r)

nµav
vr = 0, (3.7)

where D/Dt = ∂/∂t + vr∂/∂r. The last term corresponds to zero bulk radial velocity of

emitted stellar winds.

The electron internal energy density can be approximated as

ue = me

(
3K3(θ

−1
e ) +K1(θ

−1
e )

4K2(θ
−1
e )

− 1

)
≈ (3.8)

≈ 3

2

0.7 + 2c2semp/me

0.7 + c2semp/me
mpc

2
se.

This takes into account the differential heat capacity of particles (Shkarofsky et al., 1966).

The ion internal energy per particle is up = 3/2mpc
2
sp.

The energy exchange rate by Coulomb collisions is (Shkarofsky et al., 1966)

Fpe = 4.3 · 10−19 n
2

c3se
(c2sp − c2se). (3.9)
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The non-relativistic formula is used everywhere, as Fpe rate is only significant in the region

of non-relativistic electrons. The energy equation for electrons is then

n
D

Dt

(
3

2

0.7 + 2c2semp/me

0.7 + c2semp/me
c2se

)
− c2se

Dn

Dt
= CFpe +

−fen
rgvr
2r2

+
q(1 + d)

2µav

(
v2r
2

+
v2w
2

− 5

2
c2se

)
(3.10)

+
1

r2
∂r(r

2κ∂rc
2
se),

where C ∼ 1000 is the enhancement of collisions and conductivity is given by equation

(3.1). The left-hand side of the equation (3.10) represents the compressive heating in the

adiabatic flow. The Paczynski-Wiita gravitational potential (Paczynski & Wiita, 1980) is

implemented for gravitational force, but not in the entropy production term. This reflects

the fact that the dissipation of turbulence ceases near the BH as having slower timescale

compared to the inflow time. The energy equation for ions reads

n
D

Dt

(
3

2
c2sp

)
− c2sp

Dn

Dt
= −CFpe +

−fpn
rgvr
2r2

+
q(1 + d)

2µav

(
v2r
2

+
v2w
2

− 5

2
c2sp

)
. (3.11)

The energy injection rate into ions is chosen to be the same per electron as the energy

injection rate into electrons to facilitate the equality of ion and electron temperatures. Let

us write a condition on fp and fe to decrease the number of free parameters. We assume

the ratio of heating fractions to be given by the direct heating mechanism (Sharma et al.,

2007a) as

fe
fp

=
1

3

√
Te
Tp
, (3.12)

despite this calculation is non-relativistic and a large fraction of energy dissipates at the

small scales instead of direct large-scale heating.
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3.5 Solutions and Discussions

We solve the derived system of equations from the outer boundary of the feeding

region at 14′′ = 1.3 · 106rg to the inner boundary at about 1.3rg, thus covering 6 orders of

magnitude in radius. Such a huge dynamic range requires the special solution technique,

the solution of a time-dependent system of equations (Quataert, 2004) not being an option.

We employ the shooting method and find the smooth transonic solution through the inner

sonic point at ∼ 3rg. In the presence of conduction the point, where sound speed equals

inflow velocity is not special anymore, and instead the point, where isothermal speed

equals the inflow velocity, plays the role of transonic surface (Johnson & Quataert, 2007).

The system of equations is reduced to one temperature in the outflow by setting Te = Tp

and adding the equations (3.10) and (3.11). The inner boundary is set at a point rin, where

dTe/dr = 0 in a non-conductive solution. Then for any non-zero conductivity the zero

heat flux condition dTe/dr = 0 is enforced at rin. The outer boundary condition at rout

is uncertain. It is natural to think the outflow would be transonic (Lamers & Cassinelli,

1999), however, significant outer pressure may hold the gas in the subsonic regime near

rout. The position of zero velocity stagnation point rst determines the accretion rate Ṁ.

Instead of setting the pressure at the outer boundary we regulate that pressure by setting

temperature Tst at the stagnation point. Thus, we have 4 independent variables in the

fit: accretion rate Ṁ, temperature at stagnation point Tst, the ion heating rate fp and

the normalization N of the point source contribution. They are all found iteratively to

minimize χ2. We also iteratively find the positions of sonic point and stagnation point.

The positions of inner boundary and outer boundary are unchanged while solving the

4-point boundary value problem.
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The observed surface brightness radial profile is the data we fit. We generate a surface

brightness profile corresponding to the dynamical model by performing the optically thin

ray tracing of X-Rays at a set of photon energies and projected distances from the BH. We

employ the up-to-date bremsstrahlung emissivities (Gould (1980) and errata) and account

for the emission by heavy elements, excluding iron. Solar metallicity interstellar absorption

(Morrison & McCammon, 1983) is assumed with hydrogen column NH = 1023cm−2. The

fluxes are convolved with the response of Chandra to find counts, then blurred with the

energy-independent PSF (see Figure 3.2) and integrated over the radial extent of each bin.

The model with Ṁ = 6 · 10−8M⊙year
−1, fp = 0.46, Tst = 3.2 · 107 K and

550counts pixel−2 produced at r = 0 by a point source gives an excellent fit with

the minimum reduced χ2 = 1.45 and weighed χ2
wei = 0.68 with 1/r weights. The

stagnation point is at rst = 1.01′′. The correspondent unabsorbed point source luminosity

L = 4 · 1032erg s−1 is estimated for monoenergetic photons at 4 keV and agrees with the

estimates of SSC luminosity in Moscibrodzka et al. (2009). Energy 4 keV is chosen as the

energy Chandra is most sensitive to for assumed NH. The minimum reduced χ2 = 15 is

achieved for the model without the point source. The models with the outer sonic point

instead of finite bounding pressure underpredict the X-ray surface brightness at several

arcseconds, assuming fixed NH = 1023cm−2. The reliable fitting for NH is possible only

with the use of spectral data and is left for future research. The assumption Tp = Te

represents the additional point of concern. Temperature equilibrium might not hold at

the stagnation point at 1′′ (Quataert, 2004), however the thermalization rate exceeds the

outflow rate at 5′′ in our subsonic dense outflow, thus Tp = Te holds there. The reliable

modeling of non-equilibrium flows requires the modeling of the whole spatial structure of

the stellar winds and is left for the future research as well.
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Figure 3.4.— Radial profiles of electron density n = ne in cm −3 (upper panel) and electron

temperature Te in keV (lower panel) in the feeding region.
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The profiles of electron density ne and temperature Te within several arcseconds

from the BH are shown on Figure 3.4 and compare well with the simple earlier estimates

(Baganoff et al., 2003; Quataert, 2004). The difference is that our best fit is a subsonic

flow supported by the outer medium with the density bounce at 5′′. Though the achieved

outflow velocity vout = 300km s−1 is almost independent of radius for r > 2′′. The line

cooling (Sutherland & Dopita, 1993) reduces the heat contents only by several percent for

gas reaching 5′′, bremsstrahlung cooling being less important.

The profiles of dimensionless electron temperature kBTe/(mec
2) and ratio Tp/Te

within several Schwarzschild radii from the BH are shown on Figure 3.5. The electron

temperature Te = 4 · 1010 K and density ne = 2 · 106cm−3 are found close to the BH.

This dynamical model gives an excellent fit to the optically thick luminosity L = 1.73 Jy

at 86 GHz (Krichbaum et al., 2006) for assumed equipartition of thermal energy with

the magnetic field. The model overpredicts by a factor of 20 the observed Faraday

rotation measure RM ∼ 50cm−2 at 230 GHz (Marrone et al., 2007), but this may well

be a geometric factor. The accretion rate, temperature and density near the BH are in

good agreement with more complicated models specifically focusing on sub-mm emission

(Sharma et al., 2008; Moscibrodzka et al., 2009). We notice that the ratio of ion and

electron temperatures Tp/Te is significantly larger than predicted by Moscibrodzka et al.

(2009), but probably because of the significantly lower Tp in their numerical simulations of

the limited domain.
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Chapter 4

Propagation Effects in Magnetized

Transrelativistic Plasmas

Abstract

The transfer of polarized radiation in magnetized and non-magnetized relativistic

plasmas is an area of research with numerous flaws and gaps. The present chapter is aimed

at filling some gaps and eliminating the flaws. Starting from a Trubnikov’s linear response

tensor for a vacuum wave with k = ω/c in thermal plasma, the analytic expression for

the dielectric tensor is found in the limit of high frequencies. The Faraday rotation and

Faraday conversion measures are computed in their first orders in the ratio of the cyclotron

frequency Ω0 to the observed frequency ω. The computed temperature dependencies

of propagation effects bridge the known non-relativistic and ultra-relativistic limiting

formulas. The fitting expressions are found for high temperatures, where the higher

orders in Ω0/ω cannot be neglected. The plasma eigenmodes are found to become linearly
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polarized at much larger temperatures than thought before. The results are applied to the

diagnostics of the hot ISM, hot accretion flows, and jets.

4.1 Introduction

We learn much of our information about astrophysical objects by observing the light

they emit. Observations of the polarization properties of light can tell us the geometry of

the emitter, strength of the magnetic field, density of plasma, and temperature. The proper

and correct theory of optical activity is essential for making accurate predictions. While

the low-temperature propagation characteristics of plasma are well-established (Lifshits

& Pitaevskii, 1981), the theory of relativistic effects has not been fully studied. In this

chapter I discuss the propagation effects through a homogeneous magnetized relativistic

plasma. A non-magnetized case emerges as a limit of the magnetized case. The discussion

is divided into three separate topics.

Two linear plasma propagation effects are Faraday rotation and Faraday conversion

(Azzam & Bashara, 1987). Traditionally, these effects are considered in their lowest orders

in the ratio β of the cyclotron frequency Ω0 to the circular frequency of light ω, id est in a

high-frequency approximation. The distribution of particles is taken to be thermal

dN =
n exp(−γ/T )

4πm2T 2K2(T−1)
d3p (4.1)

with the dimensionless temperature T in the units of particle rest mass temperature

mc2/kB. The Faraday rotation measure RM and conversion measure are known in a

non-relativistic T ≪ 1 and an ultra-relativistic T ≫ 1 limits (Melrose, 1997c). I derive a

surprisingly simple analytic expression for arbitrary temperature T.
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The smallness of β = Ω0/ω, β ≪ 1 in the real systems led some authors (Melrose,

1997a) to conclude that the high-frequency approximation will always work. However,

there is a clear indication that it breaks down at high temperatures T ≫ 1. It was

claimed that the eigenmodes of plasma are linearly polarized for high temperatures T ≫ 1

(Melrose, 1997c), because the second order term ∼ β2 becomes larger than the first order

term ∼ β due to the T dependence. The arbitrarily large T -factor may stand in front

of higher order expansion terms in β of the relevant expressions. I find the generalized

rotation measure as a function of β and T without expanding in β and compare the results

with the known high-frequency expressions. The high-T behavior of the plasma response

is indeed significantly different.

Plasma physics involves complicated calculations. This led to a number of errors in

the literature (Melrose, 1997c), some of which have still not been fixed. In the article

I check all the limiting cases numerically and analytically and expound all the steps of

derivations. Thus I correct the relevant errors and misinterpretations made by previous

authors, hopefully not making new mistakes. The analytical and numerical results are

obtained in Mathematica 6 system. It has an enormous potential in these problems

(Marichev, 2008).

The chapter is organized as follows. The formalism of plasma response and calculations

are described in §4.2. Several applications to observations can be found in §4.3. I conclude

in §4.4 with a short summary and future prospects.
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4.2 Calculations

4.2.1 Geometry of the Problem

I assume the traditional geometry depicted on Figure 4.1:

• Euclidean basis (ẽ1, ẽ2, ẽ3),

• magnetic field along the third axis B̃ = (0, 0, B)T ,

• a wave vector of the wave k̃ = k(sin θ, 0, cos θ)T with an angle θ between k̃ and B̃.

The basis is rotated from (ẽ1, ẽ2, ẽ3) to (e1, e2, e3), so that the wave propagates along

k = (0, 0, k)T in the new basis. The transformation has the form

e1 = ẽ1 cos θ − ẽ3 sin θ, e2 = ẽ2, e3 = ẽ1 sin θ + ẽ3 cos θ, (4.2)

which can be conveniently written as

eµ = ẽνSνµ, Sνµ =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 . (4.3)

Vectors and tensors then rotate according to

Aµ = (ST )µνÃν , αµν = (ST )µσα̃σδSδν . (4.4)

4.2.2 Linear Plasma Response

The propagation of weak electromagnetic (EM) waves in a homogeneous magnetized

plasma can be fully described by the response tensor αµν . It expresses the linear

proportionality between the induced current density and the vector potential jµ(ω) =
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Figure 4.1.— Geometry of the problem.

αµ
νA

ν(ω). The spatial projection of such defined 4-D tensor αµ
ν is equal to the 3-D tensor

αij defined by j = αijA.

I consider Trubnikov’s form of the response tensor (Trubnikov, 1958; Melrose, 1997a).

I work in a low-density regime, where the plasma response is calculated for a vacuum wave

with |k| = ω/c. I take the tensor α̃µν from the first-hand derivations (Trubnikov, 1958;

Melrose, 1997a), make the transformation (4.4), and take the 1-st and 2-nd components in

both indices. Thus the projection onto the (e1, e2) plane in CGS units is

αµ
ν(k) =

iq2nωρ2

cmK2(ρ)

∫ ∞

0
dξ

[
tµν

K2(r)

r2
−RµRν

K3(r)

r3

]
, (4.5)

tµν =

 cos2 θ cosΩ0ξ + sin2 θ η cos θ sinΩ0ξ

−η cos θ sinΩ0ξ cosΩ0ξ

 , (4.6)
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Rµ =
ω sin θ

Ω0
(cos θ(sinΩ0ξ − Ω0ξ),−η(1− cosΩ0ξ)) , (4.7a)

Rν =
ω sin θ

Ω0
(cos θ(sinΩ0ξ − Ω0ξ), η(1− cosΩ0ξ)) , (4.7b)

and

r =

[
ρ2 − 2iωξρ+

ω2 sin2 θ

Ω2
0

(
2− Ω2

0ξ
2 − 2 cosΩ0ξ

)]1/2
, (4.8)

where η is the sign of the charge, Kn(r) is the n-th Bessel function of the second kind1.

The quantity ρ is the dimensionless inverse temperature,

ρ = T−1 =
mc2

kBTp
, (4.9)

where Tp the actual temperature of particles. The response of plasma is usually

characterized by the dielectric tensor. Its projection onto the (e1, e2) plane is

εµν = δµν +
4πc

ω2
αµ

ν . (4.10)

The wave equation for transverse waves in terms of εµν is

(n2rδ
µ
ν − εµν)

 E1

E2

 = 0, (4.11)

where E1 and E2 are the components of the electric field along e1 and e2 and n2r = k2c2/ω2

(Swanson, 2003).

1Note that the analogous expression in Melrose (1997c) has an extra factor Ω0ξ in the component t11

and the opposite sign of RµR
ν
term by an error. The author has corrected his formulas in Melrose (2010).
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4.2.3 High Frequency Limit

Let me first calculate the limiting expression for αµ
ν in the high-frequency limit

Ω0 ≪ ω. I denote

α = ωξ, β =
Ω0

ω
, (4.12)

substitute the definitions (4.12) into the expression (4.5), and expand the response tensor

αµ
ν in β. I retain only up to the 2-nd order of the expansion, which gives the conventional

generalized Faraday rotation (Melrose, 1997c). The first terms of the series of r, tµν , and

RµRν read

r2 = r20 + δr2, r20 = ρ2 − 2iαρ, δr2 = −sin2 θ

12
β2α4, (4.13)

tµν =

 1− cos2 θ · α2β2/2 αβη cos θ

−αβη cos θ 1− α2β2/2

 , (4.14)

RµRν = −α
4β2

4
sin2 θ

 0 0

0 1

 . (4.15)

Melrose (1997c) used the approximation r20 = −2iαρ instead of the expansion (4.13) and

obtained the approximate high-T expressions as his final answers.

However, one can take the emergent integrals, if one considers the exact expansions

(4.13,4.14,4.15). Three terms appear in the expanded expression for αµ
ν :

∫ ∞

0
dα

[
tµν

K2(r0)

r20

]
, (4.16a)

∫ ∞

0
dα

[
tµν

K3(r0)δr
2

r30

]
, (4.16b)∫ ∞

0
dα

[
RµRν

K3(r0)

r30

]
. (4.16c)
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The 2-nd term (4.16b) originates from the expansion of K2(r)/r
2 in r2 to the first order

K2(r)

r2
− K2(r0)

r20
= −δr

2

2

K3(r0)

r30
. (4.17)

Integrals (4.16a,4.16b,4.16c) can be evaluated knowing that

∫ ∞

0
dα

[
αnK2(

√
ρ2 − 2iρα)

ρ2 − 2iρα

]
= n!in+1Kn−1(ρ)

ρ2
, (4.18a)

∫ ∞

0
dα

[
αnK3(

√
ρ2 − 2iρα)

(ρ2 − 2iρα)3/2

]
= n!in+1Kn−2(ρ)

ρ3
. (4.18b)

4.2.4 Components in High-Frequency Limit

I substitute the high-frequency expansions (4.13,4.14,4.15) into the expression (4.10)

for the projection of the dielectric tensor εµν with the projection of the response tensor

αµ
ν (4.5) and take the integrals (4.16a,4.16b,4.16c) analytically. The components of the

dielectric tensor (4.10) in the lowest orders in Ω0/ω are then

ε11 = 1−
ω2
p

ω2

(
K1(ρ)

K2(ρ)

(
1 +

Ω2
0

ω2
cos2 θ

)
+

Ω2
0 sin

2 θ

ω2ρ

)
, (4.19a)

ε22 = 1−
ω2
p

ω2

(
K1(ρ)

K2(ρ)

(
1 +

Ω2
0

ω2

)
+

7Ω2
0 sin

2 θ

ω2ρ

)
, (4.19b)

ε12 = −ε21 = −iη
ω2
pΩ0

ω3

K0(ρ)

K2(ρ)
cos θ, (4.20)

where the plasma frequency ωp in CGS units is

ω2
p =

4πnq2

m
. (4.21)
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The results reproduce the non-relativistic limits for ρ→ +∞ :

ε11 = 1−
ω2
p

ω2

(
1 +

Ω2
0

ω2
cos2 θ

)
, (4.22a)

ε22 = 1−
ω2
p

ω2

(
1 +

Ω2
0

ω2

)
, (4.22b)

ε12 = −ε21 = −iη
ω2
pΩ0

ω3
cos θ, (4.22c)

where all Bessel functions of ρ approach unity2 (Lifshits & Pitaevskii, 1981; Trubnikov,

1996; Swanson, 2003; Bellan, 2006). The corresponding relativistic limits ρ → 0 of the

same components are

ε11 = 1−
ω2
p

ω2

(
1

2T

(
1 +

Ω2
0

ω2
cos2 θ

)
+ T

Ω2
0 sin

2 θ

ω2

)
, (4.23a)

ε22 = 1−
ω2
p

ω2

(
1

2T

(
1 +

Ω2
0

ω2

)
+ T

7Ω2
0 sin

2 θ

ω2

)
, (4.23b)

ε12 = −ε21 = −iη
ω2
pΩ0

ω3

ln(T )

2T 2
cos θ, (4.23c)

consistent with Melrose (1997c); Quataert & Gruzinov (2000b)3. The ultra-relativistic

non-magnetized dispersion relation then reads

ω2 =
ω2
p

2T
+ c2k2 =

2πnq2

mT
+ c2k2 (4.24)

according to the relation (4.11). The expression (4.24) is consistent with Lifshits &

Pitaevskii (1981), chapter 32.

The plasma propagation effects can usually be described in terms of only the

difference of the diagonal components and the non-diagonal component of εµν . I define

X to be a vector of T, θ, Ω0/ω. I introduce the multipliers f(X) and g(X) to correct

2The non-diagonal term has a wrong sign in Melrose (1997c).

3The diagonal plasma response is 2 times larger in Melrose (1997c) by an error.
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the expressions, when the high-frequency limit breaks. I write the difference between the

diagonal components with a multiplier f(X) as

ε11 − ε22 = f(X)
ω2
pΩ

2
0

ω4

(
K1(T

−1)

K2(T−1)
+ 6T

)
sin2 θ (4.25)

and the non-diagonal component with a multiplier g(X) as

ε12 = −iηg(X)
ω2
pΩ0

ω3

K0(T
−1)

K2(T−1)
cos θ. (4.26)

Both multipliers equal unity in the high-frequency limit f(X) = g(X) = 1. Now we can

turn to a more general case.

4.2.5 Fitting Formulas for Higher Temperatures

The ultra-relativistic expressions (4.23a,4.23b,4.23c) allow me to trace the T-factors

in front of the first 3 expansion coefficients of the dielectric tensor in β. The coefficient

at β2 is ∼ T 3/ ln(T ) times larger than at β. Thus at temperature T & 10 the 2-nd order

becomes larger than the 1-st order for the ratio Ω0/ω ∼ 10−3. This indicates that the

expansion in β may become invalid at these plasma parameters4. The multipliers f(X)

and g(X) are likely to be far from 1. I consider only the real parts of these multipliers,

since the imaginary parts correspond to absorption. The contour plots of the numerically

calculated f(X) and g(X) for somewhat arbitrary θ = π/4 are shown on Figure 4.2 and

Figure 4.3, respectively.

Let me define X to be the following combination of the parameters

X = T

√
√
2 sin θ

(
103

Ω0

ω

)
. (4.27)

4One cannot claim that the diagonal magnetized terms become larger then the non-diagonal (Melrose,
1997c).
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Figure 4.2.— Multiplier f(X) for the difference of the diagonal components ε11 − ε22 for

θ = π/4.

For the fiducial Ω0/ω = 10−3, θ = π/4 the parameter X is just temperature X = T.

I first identify the boundaries, where the high-frequency limit is valid. Then I find
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Figure 4.3.— Multiplier g(X) for the non-diagonal component ε12 for θ = π/4.

a fit for the multipliers at higher X. The expression (4.25) for the difference ε11 − ε22

is accurate within 10% for X < 0.1 if we set f(X) = 1. The expression (4.26) for ε12

is accurate within 10% for X < 30 if we set g(X) = 1. The accuracy depends on the
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parameter X rather than on the individual parameters T, Ω0/ω, θ. The expression

f(X) = 2.011 exp

(
−X

1.035

4.7

)
−

− cos

(
X

2

)
exp

(
−X

1.2

2.73

)
− 0.011 exp

(
− X

47.2

)
(4.28)

extends the applicability domain of the formula (4.25) up to X ∼ 200. Figure 4.4 shows

the fit for f(X) in comparison with the numerical results. The expression

g(X) = 1− 0.11 ln(1 + 0.035X) (4.29)

extends up to X ∼ 200 the domain of the formula (4.26). Figure 4.5 shows the fit for g(X)

in comparison with the numerical results.

4.2.6 Exact Plasma Response

The expression for the response tensor (4.5) is written for a vacuum wave with

|k|c = ω. In the real plasma, the wave is modified by the plasma response. A more general

self-consistent response tensor should be used (Trubnikov, 1958; Melrose, 1997c). One

needs to solve a dispersion relation similar to the relation (4.11) to obtain the eigenmodes.

Thus the eigenmodes and the response tensor should be computed self-consistently. One

should not forget about the antihermitian and longitudinal components of the dielectric

tensor εµν that modify the dispersion relation.

4.2.7 Eigenmodes

The above calculation is applicable also to a non-magnetized plasma. Dispersion

relation of EM waves in a non-magnetized plasma reads

ω2 = k2c2 + ω2
p

K1(T
−1)

K2(T−1)
(4.30)
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Figure 4.4.—Multiplier f(X) for the difference of the diagonal components ε11−ε22. Dashed

line — fitting formula (4.28).

in a high-frequency approximation ω ≫ ωp. The opposite limit of kc ≪ ω was considered

by Bergman & Eliasson (2001).

Now we turn to the magnetized case. Melrose (1997c) only considered the first terms

of in the expansion of αµ
ν in β to get the eigenmodes. I do the next step: consider the

full expression in β in the low-density regime kc = ω, but consider only the hermitian

part of αµ
ν in computations. The ellipticity Υ = (ε11 − ε22) : |ε12| determines the type

of eigenmodes. If |Υ| ≫ 1, then the eigenmodes are linearly polarized unless θ is close

to 0. If |Υ| ≪ 1, then the eigenmodes are circularly polarized for θ far from π/2. Let me
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Figure 4.5.— Multiplier g(X) for the non-diagonal component ε12. Dashed line — fitting

formula (4.29).

consider the fiducial model with Ω0/ω = 10−3 and θ = π/4. Figure 4.6 shows the ratio Υ

calculated in a high-frequency approximation (see § 4.2.3) (dashed line) and in a general

low-density approximation (see § 4.2.5) (solid line). The high-frequency approximation

produces the linear eigenmodes already at T & 10 consistently with Melrose (1997c).

However, the general low-density limit produces the eigenmodes with Υ ∼ 1 up to very

high temperatures T ∼ 50. Unexpectedly, the sign of the diagonal difference (ε11 − ε22)

changes at about T ≈ 25.
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Figure 4.6.— Ellipticity Υ = (ε11 − ε22) : |ε12| of eigenmodes. The absolute value of the

ratio Υ much above unity — linear eigenmodes, much below unity — circular eigenmodes.

Solid line — this chapter, dashed line — previous calculations.

4.3 Applications

The calculated transrelativistic propagation effects have far-reaching consequences in

many topics of astronomy. Let me concentrate on four applications: propagation delay,

Faraday rotation measure of light from the Galactic Center (GC), circularly polarized light

from the GC, diagnostics of jets.
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4.3.1 Dispersion Measure

Propagation delay is an important effect in pulsar dispersion (Phillips & Wolszczan,

1992). The relativistic part of this delay can be obtained from the dispersion relation

(4.30). I retain only the first-order correction in T, since T ≪ 1 in the interstellar medium

(Cox & Reynolds, 1987). Since K1(T
−1)/K2(T

−1) ≈ 1−3T/2 at low T, the non-relativistic

Dispersion Measure (DM) should be modified as

DMrel = DMnonrel

(
1− 3

2
T

)
. (4.31)

This shows that the gas density is slightly underestimated, if the non-relativistic formulas

are used5. However, the relativistic correction to the DM is small and can be neglected in

most practical cases when T ≪ 1. The effects in magnetized plasma are also relevant for

pulsars.

4.3.2 Magnetized Radiative Transfer

General Formulae

Relativistic plasmas exhibit a generalized Faraday rotation for a general orientation

of the magnetic field (Azzam & Bashara, 1987). One can decompose it into two effects:

Faraday rotation and Faraday conversion. The former operates alone at θ = 0, π, the latter

operates alone at θ = π/2, and both should be considered together for the intermediate

angles. The transfer equations (Mueller calculus) for the Stokes parameters I, Q, U, V

were devised to treat together the propagation effects, emission, and absorption (Azzam

& Bashara, 1987; Melrose & McPhedran, 1991). Good approximations for emission and

5The formula in Phillips & Wolszczan (1992) has no references/checks and is not correct.
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absorption have been long known (Trubnikov, 1958; Rybicki & Lightman, 1979; Melrose

& McPhedran, 1991; Wolfe & Melia, 2006). Now one can combine them with the proper

approximations of the propagation effects given by

d

ds



I

Q

U

V


=



0 0 0 0

0 0 −ρV ρU

0 ρV 0 −ρQ

0 −ρU ρQ 0





I

Q

U

V


, (4.32)

ρV = −ω
c
iε12, ρQ = − ω

2c
(ε11 − ε22), ρU = 0, (4.33)

and do the radiative transfer calculations. Here εµν stands for the Hermitean part given

by the relations (4.28,4.29) with the real multipliers f(X) and g(X). One of the most

interesting objects for such calculations is our Galactic Center Sgr A*.

The transfer equations were recently solved for a simple time-independent dynamical

model of the GC accretion (Huang et al., 2008). The authors treat the ordinary and

extraordinary modes as linearly polarized. They assume these eigenmodes constitute a

basis, where either U or Q components of emissivity and propagation coefficients vanish.

Actually, U components vanish (ρU = 0) already in the basis (e1, e2), since the projection

of the magnetic field onto (e1, e2) is parallel to e1 (see Melrose & McPhedran (1991) p.184).

As I have shown in the § 4.2.7, plasma modes are far from being linearly polarized at

temperatures T . 10 estimated for the GC (Sharma et al., 2007a). Thus, the propagation

coefficients should be taken from equations (4.25) and (4.26). The Faraday conversion

coefficient ρQ cannot be defined via emissivities and Faraday rotation coefficient ρV as

in Huang et al. (2008). The Faraday rotation measure was calculated from a simulated

accretion profile in Sharma et al. (2007b). However, the chapter considered only the

Faraday rotation and did not carry out the self-consistent treatment of propagation. It
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is impossible to disentangle the effects of Faraday rotation and Faraday conversion in a

relativistic plasma.

Faraday Rotation

The crucial part of any radiative transfer is the proper transfer coefficients. It allows

one to estimate the electron density near the accreting object (Quataert & Gruzinov, 2000b;

Shcherbakov, 2008a). Several formulas were suggested for the temperature dependence

of the component ε12 responsible for Faraday rotation. These formulas were yet given

for the high-frequency approximation (see § 4.2.3). Let me compare them with the exact

temperature dependence (4.20) J = K0(T
−1)/K2(T

−1) and its limits. The limits are

J → 1 as T → 0 and J → ln(T )/(2T 2) as T → +∞. The results of this comparison are

shown on Figure 4.7.

Ballantyne et al. (2007)6 divided the thermal distribution into ultra-relativistic

and non-relativistic parts as marked by the electron energy γcrit = 10. They sum the

contributions of both species with calculated densities. To make a plot, I take their

effective temperature Θ of plasma above γcrit to be just temperature Θ = T and not the

average kinetic energy as Ballantyne et al. (2007) suggest. This brings Θ to lower values

and decreases the rotation measure. Even with this decrease the rotation measure is

severely overestimated at T ∼ 1. The convergence to the relativistic limit is not achieved

even at T ∼ 30. The paper Huang et al. (2008) found the simpler fitting formula that

reproduces the limits. Their expression is quite accurate.7

6The paper Ballantyne et al. (2007) has likely confused the 3-D projection of the 4-D response tensor in
jµ = αµνAν (Melrose, 1997c) with the 3-D response tensor j = αijA that has the opposite sign.

7”Temperature” γc in Huang et al. (2008) should be redefined as γc = 1+ T , otherwise the lower limit is
not reproduced.
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Figure 4.7.— Temperature dependence of the Faraday rotation measure.

Faraday Conversion

The increase in the circular polarization of Sgr A* at frequency 1THz is predicted by

Huang et al. (2008). The phase of Faraday conversion approaches unity and the destructive

interference does not occur at this frequency. The result seems to be qualitatively correct

regardless of the expression for the conversion measure, but the proper expressions (4.25)

and (4.26) should be used for quantitative predictions.
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Jets

The better treatment of propagation effects may also play a role in observations of

jets. As we saw in § 4.2.5, the propagation effects in thermal plasma cannot be described in

the lowest orders in Ω0/ω, if the temperature T is sufficiently high. Power-law distribution

of electrons can have a quite high effective temperature. Thus the high-frequency limit

(Sazonov, 1969; Jones & O‘Dell, 1977; Melrose, 1997b) may not approximate well the

hermitian part of the response tensor. Careful analysis of jet observations (Beckert &

Falcke, 2002; Wardle et al., 1998) may be needed. It should be based at least on the

expressions for εµν in a general low-density regime.

4.4 Discussion & Conclusion

This chapter presents several new calculations and amends the previous calculations

of propagation effects in uniform magnetized plasma with thermal particle distribution

equation (4.1). The expression (4.5) for the correct response tensor is given in a high-

frequency approximation. The exact temperature dependence (4.19) and (4.20) is found

in first orders in Ω0/ω in addition to the known highly-relativistic and non-relativistic

results. The higher order terms may be important for relativistic plasmas in jets and hot

accretion flows. The fitting expressions (4.28) and (4.29) are found for the dielectric tensor

components (4.25) and (4.26) at relatively high temperatures.

The results of numerical computations are given only when the corresponding

analytical formulas are found. One can always compute the needed coefficients numerically

for every particular frequency ω, plasma frequency ωp, cyclotron frequency Ω0, and
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distribution of electrons. However, the analytic formulas offer a simpler and faster way

of dealing with the radiative transfer for a non-specialist. The eigenmodes were not

considered in much detail, since radiative transfer problems do not require a knowledge of

eigenmodes. However the knowledge of eigenmodes is needed to compute the self-consistent

response tensor (see § 4.2.6).

The response tensor in the form (4.5) can be expanded in Ω0/ω and ωp/ω. This

expansion is of mathematical interest and will be presented in a subsequent paper as well as

the expressions for a power-law electron distribution. Propagation through non-magnetized

plasmas will also be considered separately.
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Chapter 5

General Relativistic Polarized

Radiative Transfer: Building a

Dynamics-Observations Interface

Abstract

The rising amount of polarized observations of relativistic sources requires the correct

theory for proper model fitting. The equations for general relativistic (GR) polarized

radiative transfer are derived starting from the Boltzmann equation and basic ideas of

general relativity. The derivation is aimed at providing a practical guide to reproducing

the synchrotron part of radio & sub-mm emission from low luminosity active galactic

nuclei (LLAGNs), in particular Sgr A*, and jets. The recipe for fast exact calculation of

cyclo-synchrotron emissivities, absorptivities, Faraday rotation and conversion coefficients
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is given for isotropic particle distributions. The multitude of physical effects influencing

simulated spectrum is discussed. The application of the prescribed technique is necessary

to determine the black hole (BH) spin in LLAGNs, constraining it with all observations of

total flux, linear and circular polarization fractions, and electric vector position angle as

functions of the observed frequency.

5.1 Introduction

The good model of radiative transfer is the key in bridging the plasma dynamics

and the observations of compact accreting sources. The dynamics of plasma evolved

from hydrodynamics (Ruffert, 1994) to magneto hydrodynamics (MHD) (Hawley &

Balbus, 2002) and particle-in-cell (PIC) simulations (Sironi & Spitkovsky, 2009). The

modelling of compact object’s gravity has turned from quasi-Newtonian potential (Hawley

& Krolik, 2001; Igumenshchev & Narayan, 2002) to the full general relativistic (GR) MHD

(De Villiers et al., 2003; Shafee et al., 2008). Only GRMHD simulations allow to fully

account for the spin of the compact object. The radiative transfer approximations were

improving as well. The simple quasi-Newtonian ray propagation (Chan et al., 2009) gave

way to null-geodesics tracing in Kerr metric (Schnittman et al., 2006; Noble et al., 2007;

Moscibrodzka et al., 2009). The huge amount of polarization observations demanded the

polarized radiative transfer.

The main principles of GR polarized radiative transfer were formulated in Broderick

(2004). However, that formulation was not ready for applications as it lacked, for example,

the Faraday conversion and the suppression of Faraday rotation in hot plasmas. The first

application to the real object was done in Huang et al. (2009a). Their calculations included
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Faraday conversion, but made several approximations, some of which can be substantially

improved upon. For example, their simple relation on V and Q emissivities and Faraday

rotation and conversion constitutes an approximation that almost never holds. Their

emissivities are calculated in synchrotron regime, which breaks for temperatures about the

electron mass. Their frame of plasma does not fully account for the fluid motion. We are

improving on their work in the present chapter, in particular treating exactly the plasma

response and extending it to non-thermal particle distributions.

Another important issue is the complexity of GR polarized radiative transfer. The

errors and implicit strong approximations may slip into the equations of almost every

author. This is more likely the case, when certain derivation is done half-way by one

author and then continued by another author, e.g. the derivation of the Faraday conversion

coefficient in the mixture of thermal and non-thermal plasmas in Melrose (1997c) and

Ballantyne et al. (2007) neglected the importance of the finite ratio of cyclotron to observed

frequencies. Another good example is the definition of the sign of circular polarization V. It

varies from article to article and the consistent definition in a single derivation is essential.

Therefore, there appeared a need for the present chapter. In a single derivation

from the basic principles we provide the necessary applied expressions for GR polarized

radiative transfer. We start in §5.2 by consistently defining the polarization tensor, Stokes

parameters, and plasma response tensor and incorporating the response tensor into the

Newtonian radiative transfer. In §5.3 we recast the derivation of the response tensor from

Boltzmann equation for general isotropic particle distribution and do the special case

of thermal distribution. We provide the applied expressions for response tensor in the

plane perpendicular to the ray and give the consistent sign notation for both positive and

negative charges in §5.3.3. The resultant formulas for absorptivities/emissivities, Faraday
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rotation and conversion coefficients are exact and easy to evaluate. By means of locally-flat

co-moving reference frame we extend the radiative transfer to full GR in §5.4. We highlight

the various physical effects important for real astrophysical objects in §5.5. Finally, in §5.6

we briefly summarize the methods and the ways to generalize them even further.

5.2 Newtonian Polarized Radiative Transfer

The proper treatment of polarization of radiation is necessary to take the full

advantage of polarized observations. Let us start formulating the dynamics of polarization

by defining the basis. Let ẽ3 be the direction of uniform magnetic field B0. Then define the

orthonormal triad k, e1, and e2 in the standard way (Rybicki & Lightman, 1979; Sazonov,

1969; Pacholczyk, 1970): wave propagates along k vector,

e1 = C(B0 × k), (5.1)

e2 = k× e1,

where the scalar C can have either sign. We choose the axes as on Fig. 5.1: e1 is

perpendicular to (B0,k) plane and B0 lies in (k, e2) plane. The rotation around e1

transforms basis (ẽ1, ẽ2, ẽ3) to the basis (e1, e2, e3) as

e1 = ẽ1, e2 = ẽ2 cos θ − ẽ3 sin θ, (5.2)

e3 = k = ẽ2 sin θ + ẽ3 cos θ,

which can be conveniently written as

ek = ẽiMik, Mik =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 . (5.3)
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Figure 5.1.— Geometry of the problem. Vector B0 represents uniform magnetic field. The

transverse plane wave travels along k and has electric field E oscillating in (e1e2) plane.

Vectors a and b represent parallel transported basis orthogonalized with k.
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Vectors and tensors then rotate according to

Ak = (MT )kiÃi, αki = (MT )kmα̃mnMni, (5.4)

where ()T is a transposed matrix and the quantities with tildes are taken in a frame with

the basis (ẽ1, ẽ2, ẽ3). The angle θ can be found from

cos θ =
k ·B0

kB0
. (5.5)

For the electric field components E1 along e1 and E2 along e2 the Stokes parameters

are defined as

I = ⟨E1E
∗
1⟩+ ⟨E2E

∗
2⟩ ,

Q = ⟨E1E
∗
1⟩ − ⟨E2E

∗
2⟩ , (5.6)

U = ⟨E1E
∗
2⟩+ ⟨E2E

∗
1⟩ ,

V = ı(⟨E1E
∗
2⟩ − ⟨E2E

∗
1⟩),

where the last formula chooses the IAU/IEEE definition (Hamaker & Bregman, 1996)

of V, actively used by observers. That is for positive V the rotation of electric field is

counter-clockwise as seen by the observer. Nevertheless, all astrophysics textbooks agree

on the opposite definition of V (Sazonov & Tsytovich, 1968; Legg & Westfold, 1968;

Rybicki & Lightman, 1979; Rochford, 2001; Wilson et al., 2009). Let us visualize the

electric field rotation. Take the electric field

E1 = E1ω exp(ı(kz − ωt+ δ)), E2 = E2ω exp(ı(kz − ωt)) (5.7)

with positive amplitudes (Fourier coefficients) E1ω, E2ω > 0 and substitute it to the

definition (5.6). Then

I = E2
1ω + E2

2ω, Q = E2
1ω − E2

2ω (5.8)

U = 2E1ωE2ω cos δ, V = −2E1ωE2ω sin δ
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Figure 5.2.— Right-handed rotation of electric field along the ray at fixed time t correspond-

ing to negative circular polarized wave V < 0. Electric field is E1 = E1ω exp(ı(kz + δ)),

E2 = E2ω exp(ıkz), δ = π/2, where E1ω is along e1, E2ω along e2, and the wave propagates

along k. Vectors e1, e2, k constitute the right-handed triad.



Chapter 5: General Relativistic Polarized Radiative Transfer 140

Figure 5.3.— Left-handed rotation of electric field at fixed coordinate z with time corre-

sponding to negative circular polarized wave V < 0. Electric field is E1 = E1ω exp(ı(−ωt+

δ)), E2 = E2ω exp(−ıωt), δ = π/2, where E1ω is along e1, E2ω along e2.
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and V < 0 for δ ∈ (0, π). Let us fix time t = 0, δ = π/2 and draw the electric field

vector in space along the ray (see Fig. 5.2). We see that the electric field corresponds to

a right-handed screw. However, if we fix a plane in space by setting z = 0 and draw the

evolution of the electric field vector, then the rotation direction is the opposite: electric

field vector rotates counter-clockwise, if viewed along the ray (see Fig. 5.3). These opposite

directions of rotation is a common point of confusion (Rochford, 2001). Correspondingly,

the observer sees the clockwise-rotating electric field for δ = π/2, as she is situated at a

fixed z, and counter-clockwise rotating electric field for δ = −π/2 and positive V > 0.

The definition (5.6) of V has a marginal advantage: the electrons generate positive V for

propagation along the magnetic field. Let us take an electron on a circular orbit in (ẽ1ẽ2)

plane. It moves from the direction of ẽ1 to the direction of ẽ2, id est clockwise as viewed

along the magnetic field. Then the wake of the electric field follows the charge and rotates

clockwise. The resultant wave propagates along B0 and constitutes a left-handed screw,

which gives the positive V > 0.

The polarization tensor is obtained automatically from equation (5.6) as

Iij =
⟨
EiE

∗
j

⟩
=

1

2

 I +Q U − ıV

U + ıV I −Q

 . (5.9)

The polarization vector is

S = (I,Q, U, V )T . (5.10)

Note that Melrose & McPhedran (1991) uses the same definitions, however, their k, e1, e2

constitute a left triad instead of a right triad.

The plasma response is characterized by the 4× 4 response tensor αµ
ν

jµω = αµ
νA

ν
ω (5.11)
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as the proportionality between the four-vectors of vector potential amplitude and the

current density amplitude. There is freedom in choosing the gauge condition for Aµ. Let

us choose the Lorenz gauge

Aµuµ = 0 (5.12)

at each point along the ray and enforce it by adding to Aµ a vector, proportional to

kµ, what does not change the polarization tensor (5.9) (Misner et al., 1973). The gauge

condition makes A0 = ϕ = 0 and establishes the proportionality of wave electric field E

and A in the locally flat co-moving frame (Anile & Breuer, 1974; Landau & Lifshitz, 1975).

Thus, in that frame the spatial components of αµ
ν coincide exactly with the spatial 3× 3

response tensor αik in (jω)i = αik(Aω)k. We will derive the tensor αik below. It is usually

incorporated within the dielectric tensor

εik = δik +
4πc

ω2
αik. (5.13)

The wave equation for transverse waves in terms of εik is

(n2rδik − εik)

 E1

E2

 = 0, (5.14)

where the indices i, k = 1, 2, so that only the transverse 2 × 2 part of εik in (e1, e2, k)

basis is taken, and n2r = k2c2/ω2 (Swanson, 2003; Shcherbakov, 2008b). The correspondent

transport equation is (Melrose & McPhedran, 1991)

dEi

ds
=

ıω

2nrc
∆εikEk, (5.15)

where ∆εik = εik−δik.We take the equation (5.15), its conjugate, multiply correspondingly

by E∗
k and Ek, add and obtain

d ⟨EiE
∗
k⟩

ds
=
ı

ν
(αil ⟨ElE

∗
k⟩ − α∗

kl ⟨EiE
∗
l ⟩) (5.16)
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for nr = 1 with the observed frequency ν = ω/(2π) neglecting emission. Again, i, k, l = 1, 2.

Note that α12 = −α21 according to Onsager principle (Lifshits & Pitaevskii, 1981) (p. 273).

By solving the definitions of the Stokes parameters (eq. (5.6)) for ⟨EiE
∗
k⟩ and substituting

the result into the equation (5.16) we get the transport equation for the Stokes parameters

dS

ds
=



εI

εQ

0

εV


−



αI αQ 0 αV

αQ αI ρV 0

0 −ρV αI ρQ

αV 0 −ρQ αI


S (5.17)

with the polarization S vector (5.10) by adding the emission, where

αI = Im(α22 + α11)/ν,

αQ = Im(α11 − α22)/ν,

αV = 2Re(α12)/ν, (5.18)

ρV = 2Im(α12)/ν,

ρQ = Re(α22 − α11)/ν.

5.3 Derivation of Response Tensor

The response tensor is derived for thermal plasma in Trubnikov (1958); Melrose

(1997c); Swanson (2003). However, there is a need to recast the derivation, since we

want to consider both signs of charge, extend the results to non-thermal isotropic particle

distributions, and seek for extensions to non-isotropic distributions. The importance of

notation consistency cannot be overemphasized, also the orientation of our coordinate

axes is different from some of the above sources. On the way we discover the practical
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significance of the response tensor: it offers expressions for fast evaluation of plasma

absorptivities and rotativities.

5.3.1 General Isotropic Particle Distribution

Throughout this subsection and next subsection we employ vectors and tensors in (ẽ1,

ẽ2, ẽ3) basis, but skip tildes to avoid clutter. Only tildes over the response tensors are

drawn. For simplicity of notation we define the dimensionless momentum

p =
√
γ2 − 1, (5.19)

where γ = En/(mc2) ≥ 1 is the γ-factor for particles of energy En and mass m. Then the

Boltzmann equation on the distribution function f(x,p) is

∂f

∂t
+ v · ∇f + ηe

(
E+

v

c
× (B0 +B)

)
· ∇pf

mc
= 0. (5.20)

Here the velocity vector is

v = pc/γ, (5.21)

B0 is the background magnetic field, E and B are the wave electric and magnetic fields, η

is the sign of the charge and e > 0. Let us assume a general isotropic particle distribution

f0(p) instead of thermal. The wave with the phase exp(ı(k · r − ωt)) causes perturbation

in a form

f1 = exp(ı(k · r− ωt))f0Φ(p), (5.22)

which implements the general function Φ(p) of momentum p. Note that the perturbation

(5.22) is small and further analysis is valid only when |B| ≪ |B0|, which corresponds to

low radiation pressure medium. Following Trubnikov (1958); Swanson (2003) we introduce
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the cylindrical coordinates with axis along B0, so that

px = p⊥ cosϕ, py = p⊥ sinϕ (5.23)

with angle ϕ in (xy) plane. Then

k · p = kzpz + k⊥p⊥ sinϕ. (5.24)

The Boltzmann equation (5.20) results in

− ıωf1 +
ı(kzpz + k⊥p⊥ sinϕ)c

γ
f1

+ ηeE · ∇pf0
mc

+
ηe

γ
(p×B0) ·

∇pf1
mc

= 0 (5.25)

after dropping the second-order terms upon substitution of f1 from equation (5.22). For

general isotropic f0(p) the relation (p× (B0 +B)) · ∇pf0 = 0 holds, and it does not hold

for non-isotropic distributions. Only the cylindrical ϕ component is non-zero in a triple

product (p×B0) · ∇pf1. After some transformations we obtain an equation on Φ(p)

− ıωΦ +
ı(kzpz + k⊥p⊥ sinϕ)c

γ
Φ

+
d ln f0
dγ

ηe

γmc
(p ·Eω)−

ηωB

γ

∂Φ

∂ϕ
= 0 (5.26)

for general isotropic particle distribution, where Eω is an amplitude such that

E = Eω exp(ı(k · r− ωt)). Here the cyclotron frequency is

ωB =
eB0

mc
, νB =

ωB

2π
. (5.27)

We define the ratio β

β =
νB
ν
. (5.28)

Alternatively, the equation (5.26) reads

ı(a− b sinϕ)Φ + ∂Φ/∂ϕ = F (5.29)
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with

a =
γ − nzpz

ηβ
, b =

n⊥p⊥
ηβ

, F =
d ln f0
dγ

p ·Eω

B0
. (5.30)

Here nz = cos θ and n⊥ = sin θ assuming |k|c = ω. The solution is

Φ(ϕ) = exp(−ı(aϕ+ b cosϕ))

∫ ϕ

ϕ0

exp(ı(aψ + b cosψ))F (ψ)dψ, (5.31)

where the lower boundary ϕ0 is chosen at t = −∞. The negative charge moves in

the positive ϕ direction and the positive charge in the negative ϕ direction, therefore

ϕ0 = −η∞. The solution of a homogeneous equation vanishes over the finite time. Knowing

the particle distribution and the definition of a current density j = ηe
∫
f1vd

3p we calculate

the current density amplitude

jω = ηe

∫
f0Φ(p)

pc

γ
d3p. (5.32)

Then we relate it to the electric field Eω and the vector potential Aω wave amplitudes as

(jω)i = σik(Eω)k = αik(Aω)k, (5.33)

where αik = ıωσik/c. Let us calculate αik. Substituting the solution (5.31) into the

definition of the current density equation (5.32) and changing the integration variable as

ψ = ϕ− ξ we get

(jω)i = ı
ηeω

c

∫
d3p

∫ −η∞

0
exp(−ıaξ + ıb(cos(ϕ− ξ)− cosϕ))

× pi (pk(Aω)k)ϕ→ϕ−ξ

c

γB0

df0
dγ
dξ. (5.34)

One can (Trubnikov, 1958; Lifshits & Pitaevskii, 1981; Swanson, 2003) introduce the

differentiation with respect to vectors s and s′ to eliminate the momenta p in the integral

expressions, then due to uniform convergence of the integrals in dξ and dp move the
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derivatives outside the integrals. We also do the transformation ξ → −ηβξ to finally get in

(ẽ1, ẽ2, ẽ3) basis

α̃ik = − ıe
2

mc

∫
d3p

∫ ∞

0

∂2 exp(ıξγ − ıh · p)
∂si∂s′k

df0
γdγ

dξ (5.35)

= −4πıe2

mc

∂2

∂si∂s′k

∫ ∞

1
dγ
df0
dγ

∫ ∞

0
exp(ıξγ)

sin(hp)

h
dξ

with

hx =
n⊥
βη

(1− cos(βξ)) + ı(sx + cos(βξ)s′x + η sin(βξ)s′y),

hy =
sin(βξ)n⊥

β
+ ı(sy − η sin(βξ)s′x + cos(βξ)s′y),

hz = ξnz + ı(sz + s′z), (5.36)

h =
√
h2x + h2y + h2z.

5.3.2 Thermal Particle Distribution

Let us now consider the special case of an isotropic thermal distribution of particles

f0 =
ne
4π

exp(−γ/θe)
θeK2(θ

−1
e )

(5.37)

normalized as ∫ +∞

0
f04πp

2dp = ne. (5.38)

Here and below Kn(x) is a Bessel function of the second type of order n with argument x.

The normalized particle temperature is

θe =
kBT

mc2
. (5.39)

Then the response tensor (5.35) is

α̃ik =
ıe2ne
mc

∫ ∫ ∞

0

∂2

∂si∂s′k

exp(−A′γ − ıh · p)
4πγθ2eK2(θ

−1
e )

dξd3p (5.40)
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with A′ = 1/θe − ıξ and the rest of quantities defined by equation (5.36). The integral over

d3p can be taken analytically (Trubnikov, 1958) to give

α̃ik =
ıe2ne

mcθ2eK2(θ
−1
e )

∂2

∂si∂s′k

∫ ∞

0

K1(
√
A′2 + h2)√
A′2 + h2

dξ. (5.41)

Performing the differentiation in Mathematica 7 to avoid errors, one gets 3 × 3 response

tensor

α̃ik =
ıe2ne

mcθ2eK2(θ
−1
e )

∫ ∞

0
dξ

(
T̃ 1
ik

K2(R)

R2
− T̃ 2

ik

K3(R)

β2R3

)
(5.42)

with

R =

√
1

θ2e
− 2ıξ

θe
− ξ2 sin2 θ +

2 sin2 θ

β2
(1− cosβξ). (5.43)

Here

T̃ 1
ik =


cosβξ η sinβξ 0

−η sinβξ cosβξ 0

0 0 1

 , (5.44)

T̃ 2
ik = (5.45)

−(1− cosβξ)2 sin2 θ η(1− cosβξ) sinβξ sin2 θ ηβξ(1− cosβξ) cos θ sin θ

−η(1− cosβξ) sinβξ sin2 θ sin2 βξ sin2 θ βξ sinβξ sin θ cos θ

−ηβξ(1− cosβξ) cos θ sin θ βξ sinβξ sin θ cos θ β2ξ2 cos2 θ

 .

The expressions (5.42-5.45) are hiding inside two almost transverse and one almost

longitudinal damped eigenwaves.
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5.3.3 Rotation of Thermal Response Tensor

Let us apply the transformation (5.4) to tensors T̃ 1
ik and T̃ 2

ik and take the transverse

2× 2 part to obtain correspondingly

T 1
ij =

 cosβξ η sinβξ cos θ

−η sinβξ cos θ cosβξ cos2 θ + sin2 θ

 (5.46)

and T 2
ij = RiRj with

Ri = sin θ(η(1− cosβξ), cos θ(sinβξ − βξ)), (5.47)

Rj = sin θ(−η(1− cosβξ), cos θ(sinβξ − βξ))

for

αij =
ıe2ne

mcθ2eK2(θ
−1
e )

∫ ∞

0
dξ

(
T 1
ij

K2(R)

R2
− T 2

ij

K3(R)

β2R3

)
. (5.48)

The integration over ξ converges very slowly, if performed along the real axis. The

way to accelerate the convergence is to perform the integration in a complex plane at

a positive angle to the real axis. The wave frequency ν in the above calculations has a

small positive imaginary part Im(ν) > 0 to account for the energy pumped into particles

from passing waves. Then Im(β) < 0 and the expression (5.43) has zeros only in the

lower plane Im(ξ) < 0 of ξ. Thus, deforming the integration contour to the upper plane

of ξ does not change the response tensor (5.48). Note that all absorptivities αI , αQ,

and αV and rotativities ρQ and ρV are positive for electrons for θ ∈ (0, π/2) under the

definitions (5.18), what gives an easy way to check the implementation of radiative transfer

algorithm. The evaluation of these coefficients will be reported in the subsequent paper

Huang & Shcherbakov(2011, in prep.). We will also evaluate the validity of a transverse

approximation for waves.
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Following Huang et al. (2009a) we define the parallel transported vectors a and b in

addition to the right triad e1, e2, k, so that in the co-moving locally-flat reference frame

(a,b) = (e1, e2)

 cosχ sinχ

− sinχ cosχ

 . (5.49)

Then the transformation with −2χ angle

R(χ) =



1 0 0 0

0 cos(2χ) − sin(2χ) 0

0 sin(2χ) cos(2χ) 0

0 0 0 1


(5.50)

serves to get the vector of emissivities ε and the matrix of rotativities/absorptivities K in

(a, b, k) basis as

ε = R(χ)



εI

εQ

0

εV


, (5.51)

K = R(χ)



αI αQ 0 αV

αQ αI ρV 0

0 −ρV αI ρQ

αV 0 −ρQ αI


R(−χ).

Define the perpendicular magnetic field

B0⊥ = B0 − k(k ·B0)/k
2. (5.52)

The trigonometric factors are related to the magnetic field as

sinχ = (a ·B0⊥)/B0⊥, cosχ = −(b ·B0⊥)/B0⊥. (5.53)
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The radiative transfer equation is then

dS/ds = ε−KS (5.54)

for the polarization vector S defined in (a, b, k) basis.

5.4 Extension to General Relativity

Let us consider two reference frames: locally-flat co-moving reference frame with

4-velocity ûα = (1, 0, 0, 0) and flat metric and the lab frame with Kerr metric and the fluid

moving at uα. We denote by hats (̂) the quantities in the co-moving frame. Consider the

radiative transfer equation (5.54) in the co-moving frame. The set of Stokes parameters S

can be generalized to the corresponding set of photon occupation numbers

N = S/ν3, (5.55)

which are invariant under the orthogonal coordinate transformations (Misner et al., 1973;

Anile & Breuer, 1974; Ellis, 2009). Photons propagate along null-geodesics with the affine

parameter λ, so that the wave four-vector is

kα = k0
dxα

dλ
, (5.56)

and

dN

dλ
= 0. (5.57)

Here k0 is a constant photon energy, which relates to the observed frequency as

ν∞ =
k0c

2π
. (5.58)

Under such normalization of λ approximately ds ≈ dλ far from the BH. One calculates the

null geodesic starting from the observer’s plane. The perpendicular unit vector aα has a
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special orientation on that plane, and is transported along the geodesic according to

aα(λ = 0) = aα0 , aα0aα0 = 1, kσ∇σa
α = 0, (5.59)

where ∇σ is the covariant derivative. The unit vector bα is transported the same way.

Just as in a flat space case the charged particles lead to the increase of occupation

numbers N due to emission, to decrease of N due to absorption, and to exchange of N

components due to Faraday rotation and Faraday conversion. These are all the processes

occuring in linear regime. The invariant number of photons emitted per unit solid

angle per unit frequency per unit volume per unit time is proportional to the invariant

ε(ν)/ν2 = ε̂(ν̂)/ν̂2 (Mihalas & Mihalas, 1984) as

dN

dλ
∝ ε(ν)

ν2
, (5.60)

where

ν = −kµuµ (5.61)

is the photon frequency in the lab frame for (−,+,+,+) signature of metric. By ν̂ the

photon frequency in the co-moving frame is denoted. The invariant change of photon

states due to absorption and propagation effects is proportional to the co-moving frame

matrix K (see eq.(5.54)) taken within unit frequency unit solid angle unit volume unit

time. Thus the proportionality to the invariant νK(ν) = ν̂K̂(ν̂) is established (Mihalas &

Mihalas, 1984) as

dN

dλ
∝ −νK(ν)N, (5.62)

where the whole form of the absorption/state change matrix is preserved. The full GR

radiative transfer equation

ν∞
dN

dλ
=
ε̂(ν̂)

ν̂2
− ν̂K̂(ν̂)N (5.63)
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is obtained. The equation (5.63) is similar to the GR polarized transfer equation in Huang

et al. (2009a). However, their usage of primed and unprimed quantities is potentially

confusing. It is their primed quantity S′, which should be generalized to GR as NS = S′/ν3.

5.4.1 Transformation to Locally-flat Co-moving Frame

The angle χ in the expression (5.53), θ in the response tensor, and similar quantities

need to either be evaluated in the locally-flat reference frame, where fluid is at rest, or

properly calculated in GR. We choose the first path as a transparent one with the following

recipe. First, one traces the null geodesic from the observer’s plane to the BH horizon or

the sphere far from the BH and finds the vectors kα and aα (see eqs.(5.56,5.59)). At each

point on the ray one knows the vectors kα, aα, fluid four-velocity uα, and the four-vector

of magnetic field Bα
0 defined in McKinney & Gammie (2004) in the lab frame. The next

step is to transform all vectors to the co-moving frame. Let us construct an orthonormal

basis in Kerr metric in lab frame

eα(t) = (ut, ur, uθ, uϕ),

eα(r) ∝ (utur,−(utut + uϕuϕ), 0, u
ϕur), (5.64)

eα(θ) ∝ (utuθ, u
ruθ, u

θuθ + 1, uϕuθ),

eα(ϕ) ∝ (−uϕ/ut, 0, 0, 1),

where lower-index velocity is uα = gαβu
β and gαβ is the lower index Kerr metric

gαβ =



−1 + 2r
ρ 0 0 −2ar sin2 θa

ρ

0 ρ/∆ 0 0

0 0 ρ 0

−2ar sin2 θa
ρ 0 0 Σsin2 θa

ρ


(5.65)
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in (t, r, θa, ϕ) spherical polar coordinates with polar angle θa, radius r, spin a,

ρ = r2 + a2 cos2 θa, ∆ = r2 − 2r + a2, Σ = (r2 + a2)2 − a2∆sin2 θa. Then make a

transformation to

êα(t) = (1, 0, 0, 0),

êα(r) = (0, 1, 0, 0), (5.66)

êα(θ) = (0, 0, 1, 0),

êα(ϕ) = (0, 0, 0, 1)

via

S(t,r,θ,ϕ)β = (−eα(t), e
α
(r), e

α
(θ), e

α
(ϕ))gαβ . (5.67)

The transformation of a four-vector Aβ to the co-moving frame is then

Â(t,r,θ,ϕ) = S(t,r,θ,ϕ)βA
β. (5.68)

The metric in the new frame

S(i)αg
αβ(S(k)β)

T = ηik (5.69)

coincides with Minkowski metric ηik = diag(−1, 1, 1, 1). The velocity four-vector uβ

transforms to û(i) = (1, 0, 0, 0)T . Thus, the basis change (5.68) with matrix (5.67) and

vectors (5.64) constitutes the transformation to the locally-flat co-moving reference frame.

This procedure is the alternative of the numerical Gramm-Schmidt orthonormalization

applied in Moscibrodzka et al. (2009). The basis vectors (5.64) are presented in Krolik et

al. (2005); Beckwith et al. (2008a), our expressions being a simplified version of vectors in

Beckwith et al. (2008a). Note, that despite the vectors (5.64) do not explicitly depend on

the metric elements, the expressions rely on the properties of Kerr metric and are not valid

for general gαβ .
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Upon transforming uα, kα, aα, Bα
0 to the co-moving frame we easily find the wave

frequency ν = −k̂(0), then k̂ = k̂(1,2,3). The perpendicular vector â needs to be offset by k̂

as

â = â(1,2,3) − k̂
â(0)

k̂(0)
(5.70)

and then normalized to construct a spatial unit vector. The offset is due to the enforcement

of Lorenz gauge (5.12). It conveniently makes a · k = â · k̂ = 0. The vector b is found by a

simple vector product

b̂ = â× k̂ (5.71)

and then normalized. The spatial part (ê(r), ê(θ), ê(ϕ)) of basis (5.66) relates to basis

(e1, e2, e3) via the orthonormal transformation preserving angles. The magnetic field Bα
0

gets transformed to a three-vector B̂0 and all the angles are found in correspondence to

Fig. 5.1 with the help of equations (5.52,5.53) applied to hatted vectors. For example,

cos θ = (k̂ · B̂0)/(k̂B̂0). Then the whole matrix K̂ is found.

5.5 Application to Compact Objects

The described GR polarized radiative transfer finds its application in accretion onto

low luminosity active galactic nuclei (LLAGNs), in particular Sgr A*. The application of

GR is necessary to infer the BH spin, which provides important information on the past

evolution of the BH and the host galaxy itself. For example, the accretion efficiency in the

AGN phase depends strongly on the value of BH spin (Shapiro, 2005). The value of spin

and spin orientation constraints the accretion and merger history (Rees & Volonteri, 2007).

The detailed application to Sgr A* is reported in Shcherbakov et al. (2010). Let

us describe on the example of that paper, how one connects to observations. First, one
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constructs a set of dynamical models, preferably based on 3D GRMHD simulations.

Then the GR polarized radiative transfer is performed for those models as described in

the present work. The simulated spectral energy distributions (SEDs), linear (LP) and

circular (CP) polarization fractions as functions of frequency ν∞ are fitted to the observed

quantities, representative for the quasi-quiescent state of accretion. The χ2 analysis is

performed based on the inferred error or variability of the observed quantities. Then the

best fits in the parameter space can be found. The probability density can be integrated

over the full parameter space to obtain the most likely values and the confidence intervals

of BH spin, inclination angle, position angle, and model parameters.

Let us now describe the effects, which lead to certain observed cyclo-synchrotron

spectra, LP and CP fractions, and the electric vector position angle (EVPA) as functions

of frequency. The effects are plenty, what proves it hard to disentangle and provide simple

explanations of observations. It is in general challenging to achieve the realistic level of

details in collisionless plasma modelling. The next step in Shcherbakov et al. (2010) might

not be the most self-consistent. First, the radiation from LLAGNs appears to be variable

in time. The simultaneous short observations can provide only the single snapshot of a

system, not necessarily representative of a long term behavior. Thus, it is necessary to

obtain the statistically significant sample of variability of both observed and simulated

spectra to reliably estimate the average or typical flow parameters and BH spin. As recent

research suggests (Dodds-Eden et al., 2010), the modelling of a single flare can successfully

be done even without invoking GR.

As in the case of Sgr A*, the cyclo-synchrotron specific flux Fν vs ν can have a peak.

The peak frequency ν∗ and flux F ∗
ν do not necessarily correspond to the thermal cut-off of

emission. Even a small percentage of the non-thermal electrons can radiate significantly
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more than the bulk of thermal electrons. For the efficient particle acceleration most of

emission may come from the energetic electrons with cooling time tcool about the time of

inflow tin from several BH gravitational radii rg = GM/c2. The gravitational redshift and

Doppler shift due to relativistic motion can strongly modify the peak ν∗ and F ∗
ν .

The LP fraction can provide constraints on flow density near the emitting region

owing to beam depolarization effect. The LP fraction is the highest at high frequencies,

where only a small region of the flow shines and beam depolarization is weak. As all

regions of the flow radiate at lower frequencies, differential Faraday rotation and emission

EVPA vary, the resultant LP fraction is subject to cancelations and quickly ceases with

ν. However, cancelations at high ν may readily happen between two regions with similar

fluxes and perpendicular EVPAs, those regions would have perpendicular magnetic fields.

The same change of EVPA with frequency can mimic the Faraday rotation. The finite

rotation measure (RM)

RM =
EV PA1 − EV PA2

λ21 − λ22
(5.72)

does not necessarily happen due to Faraday rotation ∼
∫
nB · dl. Here λ = c/ν is the

wavelength. In fact, the meaningful application of formula (5.72) is limited to a toy case of

cold plasma far from the emitting region with the homogeneous magnetic field. In reality,

besides the change of emission EVPA with ν, the Faraday rotation coefficient ρV (ν) (see

eq.5.18) is a function of frequency (Shcherbakov, 2008b). The differential rotation measure

dRM = dEV PA/d(λ2) (5.73)

is the measured quantity (Marrone et al., 2007). It should be used in constraining the

models. Also, significant Faraday rotation can happen in the emitting region, what

introduces the effect of differential optical depth. Thus, one can only fit the observed
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EVPA(ν) and use it along with other observables to constrain the system free parameters.

As ρV (ν) is a steeply declining function of temperature θe (Shcherbakov, 2008b), the

relativistic charges contribute little to this quantity.

Substantial levels of circular polarization were recently found in Sgr A* (Munoz

et al. 2011, in prep.). There are several effects producing finite CP. First recognized

was the emissivity εV in V mode. According to Melrose (1971) it only is a factor of γ

weaker than the total emissivity εI . It produces the largest V along the magnetic field.

The Faraday conversion, transformation between the linear polarization and the circular,

operates perpendicular to the magnetic field. The Faraday conversion coefficient ρQ has a

peculiar dependence on temperature of thermal plasma or particles’ γ-factor (Shcherbakov,

2008b): ρQ = 0 for cold plasma, ρQ is exponentially inhibited for very hot plasma and

reaches the maximum for transrelativistic plasma with θe ∼ γ ∼ several ·mc2/kB. The

exponential inhibition is an effect of finite ratio ν/νB with peak ρQ only around θe ∼ 10

for ν/νB ∼ 103. Thus, for hot bulk part of particle distribution with γ ∼ several ·mc2/kB

the non-thermal electrons do not contribute significantly to Faraday conversion. Note that

this result supersedes Ballantyne et al. (2007), who following Melrose (1997c) neglected the

importance of finite ratio ν/νB. Similarly to linear polarization, the beam depolarization

can lower the net value of circular polarization at low frequencies due to differential

Faraday conversion.

In sum, there are often several explanations for the same observable quantity. One

should not settle for a simplified model trying to reproduce the observations. Instead, the

rigorous ray tracing and aposteriori explanations of a fit to the observables would be the

preferred reliable way.
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The proposed method has its limitation. The equation (5.63) is valid for optically

thick medium, but it fails to describe the behavior of a set of photons for Compton-thick

medium. The encounters of photons with energetic electrons lead to significant changes

in photon trajectory, whereas the previous discussion considered independent photons

propagating along geodesics. Luckily, the synchrotron absorption cross-section in sub-mm

is much larger than the Compton scattering cross-section, thus the optically thick medium

near Sgr A* is Compton-thin and no modifications are needed for Sgr A*. However, a

careful consideration of Compton scattering (Rybicki & Lightman, 1979) is needed to

describe the sub-mm spectrum of Compton-thick sources.

5.6 Discussion & Conclusions

In our endeavor to provide the complete and self-consistent description of GR

polarized radiative transfer we conduct the full derivation starting from definitions and

basic equations. The goal is to make the easy, transparent, and error-free derivations, thus

Mathematica 7 was used underway, the expressions were cross-checked. The absorptivities

for thermal plasma were checked numerically against known synchrotron emissivities and

cyclo-synchrotron approximations in Sazonov (1969); Leung et al. (2009). We stepped

away from the standard textbooks and assumed ”the opposite” observers’ definition of

circular polarization V, carrying the definition through all other calculations. We chose

the coordinate system with coplanar k, ẽ2, B0 and derived the plasma response tensor α̃ik

in (ẽ1, ẽ2, ẽ3) basis, also projecting it onto the transverse coordinates e1, e2. Repeating

for completeness Huang et al. (2009a), we tie the polarized radiative transfer equation

in the latter coordinates (5.17) with the transfer in a, b coordinates with the help of
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matrix (5.50). The generalization of radiative transfer to GR is performed in the easiest

way owing to the invariance of occupation numbers in different photon states and the

invariance of the transformation between the states. Lorenz gauge (5.12) helps to establish

the correspondence between 4 × 4 and spatial 3 × 3 quantities and to correctly find the

transverse vectors a, b in the co-moving locally-flat reference frame. The transformation

from the lab frame with Kerr metric to that frame is explicitly given. The intricacies of

application of GR polarized radiative transfer to LLAGNs are discussed. As the transfer

incorporates many physical effects, a priori guessing of the most important effects is

discouraged in favor of full calculation. The provided interface of dynamical models and

observations is waiting for its applications.

The treatment of particles distributions is still limited. In the current state the

calculations are optimized for isotropic in pitch-angle distributions and become especially

simple for thermal particle distribution. The integration over the pitch-angle in formula

(5.35) is in general impossible to perform for non-isotropic distributions. In this case, the

integral over ξ should be done first analytically. This calculation is left for future work.
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Chapter 6

Constraining the Accretion Flow in

Sgr A* by General Relativistic

Dynamical and Polarized Radiative

Modeling

Abstract

The constraints on the Sgr A* black hole (BH) and accretion flow parameters are

found by fitting polarized sub-mm observations. First, we compile a mean Sgr A* spectrum

by averaging observations over many epochs from reports in 29 papers, which results in a

robust spectrum determination with small standard errors. We find the mean flux Fν , linear

polarization (LP) fractions, circular polarization (CP) fractions, and electric vector position
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angles (EVPA). We run three-dimensional general relativistic magnetohydrodynamical (3D

GRMHD) simulations for dimensionless spins a∗ = 0, 0.5, 0.7, 0.9, 0.98 over a 20000M time

interval, construct averaged dynamical models, perform radiative transfer, and explore the

parameter space of spin a∗, inclination angle θ, position angle (PA), accretion rate Ṁ ,

and electron temperature Te at radius 6M . A new general relativistic polarized radiative

transfer code is implemented to simulate polarized fluxes from the averaged models.

Averaged dynamical models are compiled by averaging simulations over time. In the main

“RMS-field” model, the magnetic field is directed along the time-averaged field and has a

strength of the root-mean-square field. A model with linear time-averaged magnetic field

is also tested. We perform χ2 per degrees of freedom (dof) statistical analysis to quantify

the goodness of models in fitting mean fluxes, LP and CP fractions between 88 GHz

to 857 GHz. The RMS-field model favors spin a∗ = 0.9 with minimum χ2/dof ≈ 4.0.

Correspondent 90% confidence intervals for spin a∗ = 0.9 simulation are θ = 53◦ ± 3◦,

PA = 121◦ ± 20◦, Ṁ = (1.09± 0.13)× 10−8M⊙year
−1, Te = (4.62± 0.56) · 1010 K at 6M.

The linear averaged magnetic field model with same spin gives similar expectation values.

By combining the results from spin a∗ = 0.9 models we obtain the conservative estimates:

θ = 50◦−59◦, PA = 101◦−143◦, Ṁ = (0.9−1.7)×10−8M⊙year
−1, Te = (2.7−5.2) ·1010 K

at 6M. Fitting only the flux spectrum without LP and CP fractions results in the best

χ2
F /dof < 1 for a∗ = 0.7, 0.9, 0.98 and much wider confidence intervals, thus polarization

is an essential component for constraining the spin, disk orientation, and flow properties.

We identify physical phenomena leading to matched LP fraction, CP fraction, EVPA by

sequentially switching off radiative transfer effects. In particular, the observed amount

of CP is produced by Faraday conversion. The emission region size at 230 GHz of the

best-fitting RMS-field model with spin a∗ = 0.9 is consistent with the size 37µas observed
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by VLBI methods. We estimate the power-law index β = 0.8 − 0.9 of density profile

n ∼ r−β between Bondi radius and the inner flow. This index lies in between β = 1.5 for

advection-dominated flow and β = 0.5 for convection-dominated flow. The PA of spin

projection coincides with that of a tentative X-ray jet.

6.1 Introduction

Our Galactic Center black hole is one of many inactive galactic cores, the only

distinctive feature being its proximity to us. The mass of the black hole (BH) is known to

be M ≈ 4.5 · 106M⊙ (Ghez et al., 2003) and the spin is uncertain. It resides at a distance

of about d ≈ 8.4 kpc. Because of such proximity, many observations of the source were

made in all wavelengths, which are not completely obscured by absorption: γ-rays, X-rays,

IR, (sub-)mm, and radio. The origins of X-rays are bremsstrahlung from hot gas near the

radius of BH gravitational influence (Narayan et al., 1995, 1998; Shcherbakov & Baganoff,

2010) and Compton-scattered emission close to the horizon (Moscibrodzka et al., 2009).

X-rays at large radius are spatially resolved, which gives an opportunity to test dynamical

models far from the black hole (Shcherbakov & Baganoff, 2010). The sub-mm emission

is cyclo-synchrotron originating close to the black hole. Cyclo-synchrotron emission is

polarized, both linear and circular polarizations were observed from Sgr A* at several

sub-mm wavelengths. The accretion flow was recently resolved at 230 GHz (Doeleman et

al., 2008). General relativistic (GR) effects were deemed necessary to explain the small size

with full width at half maximum (FWHM) of 37µas. The radio emission is also produced

by cyclo-synchrotron, but at larger distance from the BH. Thus, to study the effects of

GR, one should model sub-mm polarized observations while also considering the amount
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of Compton-scattered X-rays. Modeling the sub-mm in the range 88 GHz to 857 GHz is

the goal of the present chapter.

First, we need to understand which observations to fit. Sgr A* is a variable source

with a variability amplitude routinely reaching 30% in sub-mm. A popular approach

is to fit simultaneous observations (e.g. Yuan et al. 2004; Broderick et al. 2009a), in

particular the set from Falcke et al. (1998). However, one cannot easily combine two sets of

observations in such an approach: the addition of a new frequency would require redoing

observations of every other frequency at that instant of time. Simultaneous observations

of linear polarization (LP) and circular polarization (CP) at several frequencies were not

yet performed. Thus, it is quite reasonable to consider non-simultaneous statistics of all

observations at all frequencies instead and find the mean values and standard errors of

quantities at each frequency. We check that samples of observed fluxes and LP fractions

are consistent with a Gaussian distribution at ν ≥ 88 GHz.

A good GR dynamical model of accretion is required to reproduce the observations.

There are now numerous accretion flow models applicable to the Galactic Center:

advection-dominated accretion flow (ADAF) (Narayan & Yi, 1995), adiabatic inflow-

outflow solution (ADIOS) (Blandford & Begelman, 1999), jet-ADAF (Yuan et al.,

2002), jet (Maitra et al., 2009), and the models directly based on numerical simulations.

These quasi-analytical models in general have a large number of free parameters and also

incorporate many assumptions that are not generally justifiable (Huang et al., 2008, 2009a),

which leads to unreliable constraints on the properties of the black hole accretion flow. The

numerical simulations require fewer inputs and settle into a quasi-steady accretion, which

justifies their use. GRMHD simulations, like those performed in McKinney & Blandford

(2009); Fragile et al. (2009); Noble & Krolik (2009); Moscibrodzka et al. (2009); Penna
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et al. (2010), are necessary for modeling matter infall onto a rotating BH. The behavior

of accretion is also different between two-dimensional and three-dimensional models

(Igumenshchev, 2008) due to Cowling’s anti-dynamo theorem, so we model the flow in

three dimensions. Numerical simulations are limited to a region relatively close to the BH

(Dexter et al., 2009; Moscibrodzka et al., 2009), whereas some emission and some Faraday

rotation might happen far from the BH. Thus, we analytically extend the modeled region

out to 20000M , do radiative transfer, and find the best fit to the data. The extension to

large radius allows us to define the electron temperature more consistently (Sharma et

al., 2007a). We find a posteriori (see Appendix 6.9) that the simulated polarized spectra

are insensitive to variations of analytic extensions of density and temperature, but may

depend on the extension of the magnetic field.

A good dynamical model does not eliminate the uncertainty of comparing to

data. Indeed, correct radiative transfer and statistical analysis are necessary for such a

comparison. The simplest Newtonian radiation consideration (Yuan et al., 2004) does

not provide a means to treat radiation close to the BH. A quasi-Newtonian approach

offers some improvement (Goldston et al., 2005; Chan et al., 2009). General relativistic

treatments of unpolarized light (Fuerst & Wu, 2004; Dexter et al., 2009; Dolence et al.,

2009) capture most GR effects, but only polarized general relativistic radiative transfer

(Broderick et al., 2009a; Gammie & Leung, 2010; Shcherbakov & Huang, 2011) is exact

and captures all GR phenomena. The present chapter adopts this approach. We are

able to compare the results of modeling to extensive polarization data, constraining much

better the flow parameters and spin. In fact, fitting only the total flux spectrum might

not constrain the spin. Spin values from a∗ = 0 (Broderick et al., 2009a) to a∗ = 0.9

(Moscibrodzka et al., 2009) are found in the literature. Other radiation ingredients may
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include Comptonization (Moscibrodzka et al., 2009) and radiation from non-thermal

electrons (Mahadevan, 1998; Özel et al., 2000; Yuan et al., 2004). We do not consider

non-thermal electrons, but find that strong radio emission at ν < 50 GHz is produced in

polar flow regions even by thermal electrons. Emissivities are calculated in synchrotron

approximation (Legg & Westfold, 1968; Sazonov, 1969; Pacholczyk, 1970; Melrose, 1971)

with an exact thermal electron distribution. Emissivities in the synchrotron approximation

are very close to the exact cyclo-synchrotron emissivities (Leung et al., 2009; Shcherbakov

& Huang, 2011), so we use the former. However, the exact Faraday rotation and conversion

expressions are employed (Shcherbakov, 2008b), as no similar approximations exist for

them.

The comparison of simulations to observations were done in the past “by eye” in

studies of Sgr A* until quite recently, when Broderick et al. (2009a) followed by Dexter

et al. (2009) introduced statistical analyses. We extend their approach by incorporating

the statistics of LP and CP fractions and comparing simulated spectra to observed ones at

many frequencies simultaneously. After checking for normality of observations, computing

their means and standard errors, we employ χ2 statistics. We search the space of all

parameters: spin a∗, inclination θ, ratio of proton to electron temperatures Tp/Te at

distance 6M from the center, and accretion rate Ṁ to find the minimum χ2 models. We

find models with χ2 relatively close to unity. Then we integrate the χ2 probability density

function (PDF) over the entire parameter space and compute the expectation values of

model parameters together with the uncertainties and 90% confidence intervals. Full

statistical analysis is performed in the present work.

The chapter is constructed as follows. We summarize the observational manifestations

of the accretion flow in the sub-mm in § 6.2. The 3D GRMHD simulations are described in
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§ 6.3 together with the physically-motivated extension to large radii, the electron heating

prescription, and the flow averaging prescription. We run simulations for dimensionless

spins a∗ = a/M = 0, 0.5, 0.7, 0.9, 0.98. As the required CPU time to compute the average

of simulated spectra via many snapshots to mimic observations is prohibitively large, we

perform radiative transfer over averaged models. The GR polarized radiative transfer

technique is elaborated upon in § 6.5. The statistical analysis is presented in § 6.6. The

set of observations considered consists of the spectral energy distribution (SED) within

the 88 GHz to 857 GHz frequency range, linear polarization (LP) fractions at 88 GHz,

230 GHz, and 349 GHz, and circular polarization (CP) fractions at 230 GHz and 349 GHz.

In § 6.7 we discuss numerous results: the best fits to observations, the behaviors of χ2

near the best fits, the importance of various physical effects in producing the observed

CP, LP, and electric vector position angle (EVPA), expectation values of quantities and

confidence intervals, and image size estimates. We show the actual images of total and

polarized intensities and generate movies. Discussion in § 6.8 compares the results to

previous estimates, emphasizes the significance of polarization, notes the sources of errors,

and outlines prospects for future work. We note that fitting only the total flux provides

very loose constrains on the flow. In Appendix 6.9 we perform a number of convergence

tests for radial extension of the dynamical model and GR polarized radiative transfer code.

Throughout the chapter we measure distance and time in the units of BH mass M by

setting the speed of light and gravitational constant to unity.
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6.2 Observations

Sgr A* is known to be a highly variable source, yet quiescent models of Sgr A*

emission are popular and useful. Unlike the drastic variations of X-ray and NIR fluxes

(Baganoff et al., 2001; Genzel et al., 2003), sub-mm fluxes do not vary by more than a

factor of 2 − 3 (Zhao et al., 2003). Thus, it is reasonable to approximate the distribution

of observed fluxes at each frequency and polarization type by a Gaussian, find the mean

and the standard error and use the framework of standard χ2 analysis. Previously, the

flux spectra were modeled by Yuan et al. (2004); Broderick et al. (2009a). However,

both papers summarize a limited set of observations and do not perform any averaging.

Sub-mm flux data reported in Yuan et al. (2004) consists of a short set of observations by

Falcke et al. (1998) and one set of SMA observations by Zhao et al. (2003). Broderick et

al. (2009a) adds to these the rest of SMA total flux data (Marrone et al., 2006a,b, 2007,

2008). Thus, only 6 out of at least 29 papers on sub-mm observations of Sgr A* were

employed. Our work computes a properly averaged spectrum based on all papers to date

reporting sub-mm observations of Sgr A*.
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Table 6.1:: Summary of Sgr A* radio/sub-mm observations

ν [GHz] Telescopes Fν [Jy] LP [%] CP [%] EVPA [◦]

8.45 VLA 0.683±0.032 (Serabyn et al., 1997; Fal-
cke et al., 1998; Bower et al., 1999a; An
et al., 2005)

· · · −0.26 ±
0.06b

(Bower et
al., 1999a)

· · ·

14.90 VLBA,
VLA

0.871 ± 0.012a(Serabyn et al., 1997;
Falcke et al., 1998; Bower et al., 2002;
Herrnstein et al., 2004; An et al., 2005;
Yusef-Zadeh et al., 2009)

· · · −0.62 ±
0.26b(Bower
et al., 2002)

· · ·

22.50 VLBA,
VLA

0.979 ± 0.016a(Serabyn et al., 1997;
Falcke et al., 1998; Bower et al., 1999b;
Herrnstein et al., 2004; An et al., 2005;
Lu et al., 2008; Yusef-Zadeh et al., 2007,
2009)

0.20 ± 0.01b

(Bower et
al., 1999b;
Yusef-
Zadeh et
al., 2007)

· · · · · ·

43 GMVA,
VLBA,
VLA

1.135 ± 0.026a(Falcke et al., 1998; Lo
et al., 1998; Bower et al., 1999b; Herrn-
stein et al., 2004; An et al., 2005; Shen
et al., 2005; Krichbaum et al., 2006; Lu
et al., 2008; Yusef-Zadeh et al., 2007,
2009)

0.50+0.27
−0.17

b

(Bower et
al., 1999b;
Yusef-
Zadeh et
al., 2007)

· · · · · ·

88 BIMA,
MPIfR,
VLBA,
VLA,
Nobeyama,
NMA,
CARMA

1.841 ± 0.080 (Falcke et al., 1998;
Krichbaum et al., 1998; Bower et al.,
1999b; Doeleman et al., 2001; Miyazaki
et al., 2004; Shen et al., 2005; Krich-
baum et al., 2006; Macquart et al.,
2006; Lu et al., 2008; Yusef-Zadeh et
al., 2009)

1.03+0.21
−0.18

c

(Bower et
al., 1999b;
Macquart et
al., 2006)

· · · -4d (Bower
et al.,
1999b; Shen
et al., 2005;
Macquart et
al., 2006)

102 OVRO,
CSO-
JCMT,
Nobeyama,
NMA,
IRAM

1.91 ± 0.15 (Serabyn et al., 1997; Fal-
cke et al., 1998; Miyazaki et al., 2004;
Mauerhan et al., 2005; Yusef-Zadeh et
al., 2009)

· · · · · · · · ·

145 Nobeyama,
NMA,
IRAM,
JCMT

2.28±0.26 (Falcke et al., 1998; Aitken
et al., 2000; Miyazaki et al., 2004;
Yusef-Zadeh et al., 2009)

· · · · · · · · ·

230 IRAM,
JCMT,
BIMA,
SMA,
OVRO

2.64 ± 0.14 (Serabyn et al., 1997; Fal-
cke et al., 1998; Aitken et al., 2000;
Bower et al., 2003, 2005; Zhao et al.,
2003; Krichbaum et al., 2006; Marrone
et al., 2006a, 2007, 2008; Doeleman et
al., 2008; Yusef-Zadeh et al., 2009)

7.02+0.63
−0.58

c

(Bower et
al., 2003,
2005; Mar-
rone et al.,
2007, 2008)

−1.2 ± 0.3b

(Munoz et
al. (2009),
Munoz et
al. 2011, in
prep.)

111.5 ± 5.3
(Bower et
al., 2003,
2005; Mar-
rone et al.,
2007, 2008)

349 SMA, CSO,
JCMT

3.18± 0.12 (Aitken et al., 2000; An et
al., 2005; Marrone et al., 2006b, 2007,
2008; Yusef-Zadeh et al., 2009)

6.14+0.75
−0.67

c

(Marrone et
al., 2006b,
2007)

−1.5 ± 0.3
b(Munoz et
al. 2011, in
prep.)

146.9 ± 2.2
(Marrone et
al., 2006b,
2007)

Continued on Next Page. . .
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Table 6.1 – Continued

ν [GHz] Telescopes Fν [Jy] LP [%] CP [%] EVPA [◦]

674 CSO, SMA 3.29 ± 0.35 (Marrone et al., 2006a,
2008; Yusef-Zadeh et al., 2009)

· · · · · · · · ·

857 CSO 2.87±0.24 (Serabyn et al., 1997; Mar-
rone et al., 2008; Yusef-Zadeh et al.,
2009)

· · · · · · · · ·

aFlux observations at 14.9, 22.50, 43 GHz are inconsistent with a Gaussian distribution (Her-
rnstein et al., 2004), while other fluxes, CP fractions and logarithms of LP fractions are
consistent with Gaussian distributions.
bThe uncertainty of the mean in these quantities is given by instrumental errors.
cStandard errors are computed for logarithms of LP fractions.
dThe mean EVPA at 88 GHz is uncertain due to the ±180◦ degeneracy; e.g. the reported
EVPA = 80◦ could as well be interpreted as −100◦.

The reported observations vary greatly in the covered period from several hours (An

et al., 2005) to several years (Zhao et al., 2003; Krichbaum et al., 2006). We know that

variations of a factor of 2 may happen within several hours (Yusef-Zadeh et al., 2009),

whereas more than a factor of several are never observed in the sub-mm. Thus, fluxes

observed more than a day apart are weakly correlated. A question of autocorrelation

timescales will be addressed in more detail in future work. We, therefore, consider the

following averaging technique to robustly sample the distributions of fluxes. First, we

define groups of close frequencies, where frequencies are different by no more than several

percent from the mean. There are 11 groups (see Table 6.1). We have excluded papers

reporting frequencies far from the mean of each group. In particular, 94 GHz and 95 GHz

observations in Li et al. (2008); Falcke et al. (1998) and the 112 GHz observations in

Bower et al. (2001) are excluded. A mean frequency is ascribed to represent each group.

Then we take all the reported observations of each polarization type (total flux, LP and

CP fraction, EVPA) for each group and draw the largest sample of fluxes/polarization

fractions observed more than one day apart. When several fluxes are reported over a

period of several hours (Yusef-Zadeh et al., 2009), we normally only draw one data point
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from the very beginning of such an observation. There are some unreliable observations

over the set of papers. Often unreliable data is produced by observing in sub-mm with

large beam size. Light from Sgr A* is blended with dust and other sources. For example,

SMT data (Yusef-Zadeh et al., 2009), early CSO measurements (Serabyn et al., 1997), and

early JCMT measurements (Aitken et al., 2000) may have such issues. We exclude these

data from the sample. The interferometric observations, especially with VLBI, help to

reduce an error of otherwise unreliable observations, e.g. with BIMA array (Bower et al.,

2001). However, some inconsistencies still exist for simultaneous observations at the same

frequency with different instruments (Yusef-Zadeh et al., 2009).

After a robust sample of fluxes, polarization fractions, and EVPA angles is found

for each frequency group, we compute the mean, the standard error and check (by

Kolmogorov-Smirnov test) that the data are consistent with the resultant Gaussian

distribution. For LP fractions we consider the statistics of log(LP). The summary of results

is presented in Table 6.1. CP fractions of −1.2% at 230 GHz and −1.5% at 349 GHz

are based on preliminary work by SMA collaboration with the reported error ±0.3% of

instrumental nature. The p-values of the Kolmogorov-Smirnov consistency test are above

0.05 for log(LP) and EVPA in each frequency group, which shows the consistency of sample

fluxes/LP fractions with Gaussians and validates the χ2 analysis. Also, p > 0.05 holds for

fluxes at all frequencies except ν = 14.90 GHz, ν = 22.50 GHz, ν = 43 GHz. Exceptionally

large samples of > 100 fluxes are reported in Herrnstein et al. (2004) for those frequencies.

The flux distribution at ν ≤ 43 GHz is found to be bimodal and inconsistent with a

Gaussian. However, p = 0.7 for the Kolmogorov-Smirnov test at ν = 230 GHz despite a

large sample of 50 fluxes. Thus, we prove that the current state of observations supports

Gaussian distributions of Fν , log(LP), CP, and EVPA for frequencies ν ≥ 88 GHz and
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allows for χ2 statistical analysis based on computed means and standard errors. Note also,

that standard errors in our flux samples are smaller than the error bars of old observations

(Falcke et al., 1998; Yuan et al., 2004; Broderick et al., 2009a), but the errors are still

larger compared to contemporary single-observation instrumental errors (Marrone et al.,

2007). Thus, we do not incorporate instrumental error in our estimates of an error of a

flux sample mean. The same is true for log(LP) and EVPA. We do not incorporate the

source size measurements (Doeleman et al., 2008) in calculating the χ2, but check that the

best fit model is consistent with those observations. Figure 6.1 shows a compilation of the

mean quantities with their Gaussian standard errors. The data are represented by both

error bars and the interpolated shaded area in between. A red dashed curve on Fν plot

represents the analytic approximation Fν = 0.248ν0.45 exp(−(ν/1100)2), where flux is in Jy

and frequency is in GHz.

6.3 Dynamical Model: 3D GRMHD Simulations

Our radiative transfer calculations take the results of simulations of accretion flows

onto black holes as input. These simulations are similar to those in Penna et al. (2010).

We review the methodology.

6.3.1 Governing Equations

We simulate radiatively inefficient accretion flows (RIAFs) onto rotating black holes

using a three-dimensional fully general relativistic code (see §6.3.3). The black hole is

described by the Kerr metric. We work with Heaviside-Lorentz units, so that the unit of

distance is rg =M and the unit of time equals rg/c =M . Our five simulations correspond
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Figure 6.1.— Mean observed SEDs of specific flux Fν , linear polarization (LP) fraction,

electric vector position angle (EVPA), and circular polarization (CP) fraction. The error

bars show the 1σ standard error of the mean. The dashed line on the Fν plot represents the

analytic approximation Fν(Jy) = 0.248ν0.45 exp(−(ν/1100)2) for frequency ν in GHz (not

the simulated SED). As noted in Table 6.1, the error is instrumental for CP, whereas it is

computed from a sample of observed quantities for flux, LP and EVPA.
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to different choices of the dimensionless black hole spin parameter: a∗ = 0, 0.5, 0.7, 0.9, and

0.98. The self-gravity of the RIAF is ignored.

The RIAF is a magnetized fluid, so we solve the GRMHD equations of motion

(Gammie et al., 2003). Mass conservation gives:

∇µ(ρu
µ) = 0, (6.1)

where ρ is the fluid frame rest-mass density, uµ is the contravariant 4-velocity, and ∇µ is

the covariant derivative. Energy-momentum conservation gives

∇µT
µ
ν = 0, (6.2)

where the stress energy tensor Tµ
ν includes both matter and electromagnetic terms,

Tµ
ν = (ρ+ ug + pg + b2)uµuν + (pg + b2/2)δµν − bµbν , (6.3)

where ug is the internal energy density and pg = (Γ − 1)ug is the ideal gas pressure with

Γ = 4/3 1. The contravariant fluid-frame magnetic 4-field is given by bµ and is related to

the lab-frame 3-field via bµ = Bνhµν/ut where h
µ
ν = uµuν + δµν is a projection tensor, and δµν

is the Kronecker delta function (Gammie et al., 2003). We often employ b below, which is

the orthonormal magnetic field vector in a comoving locally flat reference frame (Penna et

al., 2010). The magnetic energy density (ub) and magnetic pressure (pb) are then given by

ub = pb = bµbµ/2 = b2/2 = b2/2. Note that the angular velocity of the gas is Ω = uϕ/ut.

Magnetic flux conservation is given by the induction equation

∂t(
√
−gBi) = −∂j [

√
−g(Bivj −Bjvi)], (6.4)

1Models with Γ = 5/3 show some minor differences compared to models with Γ = 4/3 (McKinney &
Gammie, 2004; Mignone & McKinney, 2007).
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where vi = ui/ut, and g = Det(gµν) is the determinant of the metric. No explicit resistivity

or viscosity is included.

In Penna et al. (2010), we studied both RIAFs and geometrically thin, radiatively

efficient disks. For the later case, a cooling term was added to the energy-momentum

equation (6.2) to describe radiative losses and keep the disk thin. The current set of models

are all RIAFs, so no cooling term is needed, energy generated by viscous dissipation is

advected along with the flow or transported out due to convection or in a wind.

6.3.2 Physical Models

The initial mass distribution is an isentropic equilibrium torus (Chakrabarti, 1985a,b;

De Villiers et al., 2003) with pressure p = K0ρ
4/3 for K0 = 0.009. The torus inner edge is

at rin = 20M and maximum density and pressure are at Rmax = 65M . We initialize the

solution so that ρ = 1 at the pressure maximum. As in Chakrabarti (1985a), the angular

velocity distribution of the initial torus is a power law , where for the Chakrabarti (1985a)

q-parameter we choose q = 1.65 (At large radii Ω ∼ (r/M)−q.). The thickness of the torus

at the pressure maximum is then |h/r| = 0.3, where

|h/r| ≡
∫ ∫ ∫

|θ − π/2| ρ(r, θ, ϕ)dAθϕdt∫ ∫ ∫
ρ(r, θ, ϕ)dAθϕdt

, (6.5)

where dAθϕ ≡
√
−gdθdϕ is an area element in the θ − ϕ plane, and the integral over

dt is a time average over the period when the disk is in a steady state (see §6.3.6). A

tenuous atmosphere fills the space outside the torus. It has the same polytropic equation

of state as the torus, p = K0ρ
Γ, with Γ = 4/3, and an initial rest-mass density of

ρ = 10−6(r/M)−3/2, corresponding to a Bondi-like atmosphere. The torus is threaded with

three loops of weak, poloidal magnetic field: the initial gas-to-magnetic pressure ratio is
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β = pg,max/pb,max = 100, where pmax and pb,max are the maximum values of the gas and

magnetic pressure in the torus. This approach to normalizing the initial field is used in

many other studies (Gammie et al., 2003; McKinney & Gammie, 2004; McKinney, 2006a;

McKinney & Narayan, 2007b; Komissarov & McKinney, 2007; Penna et al., 2010).

Recent GRMHD simulations of thick disks indicate that the results for the disk (but

not the wind-jet, which for us is less important) are roughly independent of the initial field

geometry (McKinney & Narayan, 2007a,b; Beckwith et al., 2008b). The vector potential

we use is the same as in Penna et al. (2010). It is

Aϕ,N ∝ Q2 sin

(
log(r/S)

λfield/(2πr)

)
[1 + 0.02(ranc− 0.5)] , (6.6)

with all other Aµ initially zero. We use Q = (ug/ug,max − 0.2)(r/M)3/4, and set Q = 0 if

either r < S or Q < 0. Here ug,max is the maximum value of the internal energy density in

the torus. We choose S = 22M and λfield/(2πr) = 0.28, which gives initial poloidal loops

that are roughly isotropic such that they have roughly 1:1 aspect ratio in the poloidal plane.

The form of the potential in equation 6.6 ensures that each additional field loop bundle

has opposite polarity. Perturbations are introduced to excite the magneto-rotational

instability (MRI). The second term on the right-hand-side (RHS) of equation 6.6 is a

random perturbation: ranc is a random number generator for the domain 0 to 1. Random

perturbations were introduced in the initial internal energy density in the same way, with

an amplitude of 10%. In Penna et al. (2010), it was found that similar simulations with

perturbations of 2% and 10% became turbulent at about the same time, the magnetic

field energy at that time was negligibly different, and there was no evidence for significant

differences in any quantities during inflow equilibrium.
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6.3.3 Numerical Methods

We perform simulations using a fully 3D version of HARM that uses a conservative

shock-capturing Godunov scheme (Gammie et al., 2003; Shafee et al., 2008; McKinney,

2006b; Noble et al., 2006; Mignone & McKinney, 2007; Tchekhovskoy et al., 2007;

McKinney & Blandford, 2009). We use horizon-penetrating Kerr-Schild coordinates for the

Kerr metric (Gammie et al., 2003; McKinney & Gammie, 2004), which avoids any issues

with the coordinate singularity in Boyer-Lindquist coordinates. The code uses uniform

internal coordinates (t, x(1), x(2), x(3)) mapped to the physical coordinates (t, r, θ, ϕ). The

radial grid mapping is

r(x(1)) = R0 + exp (x(1)), (6.7)

which spans from Rin = 0.9rH to Rout = 200M , where rH is the radius of the outer event

horizon. This just ensures the grid never extends inside the inner horizon, in which case

the equations of motion would no longer be hyperbolic. The parameter R0 = 0.3M controls

the resolution near the horizon. For the outer radial boundary of the box, absorbing

(outflow, no inflow allowed) boundary conditions are used.

The θ-grid mapping is

θ(x(2)) =
[
Y (2x(2) − 1) + (1− Y )(2x(2) − 1)7 + 1

]
(π/2), (6.8)

where x(2) ranges from 0 to 1 (i.e. no cut-out at the poles) and Y = 0.65 is chosen to

concentrate grid zones toward the equator. Reflecting boundary conditions are used at the

polar axes. The ϕ-grid mapping is given by ϕ(x(3)) = 2πx(3), such that x(3) varies from 0

to 1/2 for a box with ∆ϕ = π. Periodic boundary conditions are used in the ϕ-direction.

Penna et al. (2010) considered various ∆ϕ for thin disks and found little difference in the

results. In all of their tests, ∆ϕ > 7|h/r| and we remain above this limit as well. In what
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follows, spatial integrals are renormalized to refer to the full 2π range in ϕ, even if our

computational box size is limited in the ϕ-direction. For the purpose of radiative transfer

we combine two identical regions of size ∆ϕ = π preserving the orientation to obtain the

span of full 2π.

6.3.4 Resolution and Spatial Convergence

The resolution of the simulations is Nr ×Nθ ×Nϕ = 256× 64× 32. This is the fiducial

resolution of Penna et al. (2010). Shafee et al. (2008) found this resolution to be sufficient

to obtain convergence compared to a similar 512×128×32 model. In the vertical direction,

we have about 7 grid cells per density scale height. Turbulence is powered by the MRI,

which is seeded by the vertical component of the magnetic field (Balbus & Hawley, 1998).

The characteristic length scale of the MRI is the wavelength of the fastest growing mode:

λMRI = 2π
vA
Ω0
, (6.9)

where vA is the Alfvén speed. Assuming hydrostatic equilibrium, we can rewrite this

formula near the midplane of the disk in terms of the dimensionless disk thickness h/r and

the plasma β:

λm = 2π(h/r)
1√
β
r. (6.10)

Clearly the MRI is most difficult to resolve when β is large. We have local values of

β ∼ 20 − 100 initially and then β decreases until it is order β ∼ 10 in the disk beyond

the black hole and order β ∼ 1 near the black hole due to the instability exponentially

amplifying the initial field. We find that λm > h always, and the MRI is well-resolved in

the midplane of disk both initially and in the saturated state because h/r is resolved by

the chosen θ grid. Penna et al. (2010) studied convergence in Nr, Nθ, and Nϕ and found
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that models with Nr = 256 or Nr = 512, Nθ = 64 or Nθ = 128, and Nϕ = 64 or Nϕ = 32

behaved similarly for disks with similar resolution across the disk. Our resolution of the

MRI and prior convergence testing by Penna et al. (2010) for similarly-resolved disks

justify our choice of grid resolution. It is currently not computationally feasible to perform

a similar spin parameter study at much higher resolutions, and future studies will continue

to explore whether such simulations are fully converged.

A key feature of our code is the use of a 3rd order accurate (4th order error) PPM

scheme for the interpolation of primitive quantities (i.e. rest-mass density, 4-velocity

relative to a zero angular momentum observer (ZAMO), and lab-frame 3-magnetic field)

(McKinney, 2006a). Simulations of fully three-dimensional models of accreting black

holes producing jets using our 3D GRMHD code show that this PPM scheme leads to

an improvement in effective resolution by at least factors of roughly two per dimension

as compared to the original HARM MC limiter scheme for models with resolution

256×128×32 (McKinney & Blandford, 2009). The PPM method is particularly well-suited

for resolving turbulent flows since they rarely have strong discontinuities and have most

of the turbulent power in long wavelength modes. Even moving discontinuities are much

more accurately resolved by PPM than minmod or MC. For example, even without a

steepener, a simple moving contact or moving magnetic rotational discontinuity is sharply

resolved within about 4 cells using the PPM scheme as compared to being diffusively

resolved within about 8-15 cells by the MC limiter scheme.
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6.3.5 Ceiling Constraints

During the simulation, the rest-mass density and internal energy densities can become

quite low beyond the corona, but the code only remains accurate and stable for a finite

value of b2/ρ, b2/ug, and ug/ρ for any given resolution. We enforce b2/ρ . 10, b2/ug . 100,

and ug/ρ . 10 by injecting a sufficient amount of mass or internal energy into a fixed

zero angular momentum observer (ZAMO) frame with 4-velocity uµ = {−α, 0, 0, 0}, where

α = 1/
√

−gtt is the lapse.

We have checked the ceilings are rarely activated in the regions of interest of the flow.

Figure 6.2 shows the constrained ratios, b2/ρ, b2/ug, and ug/ρ, as a function of θ at six

radii (r = 4, 6, 8, 10, 12, and 14M) for the a∗ = 0 model. The data has been time-averaged

over the steady state period from t = 14000M to 20000M . The ceiling constraints are

shown as dashed red lines. and we see that the solution stays well away from the ceilings.

This shows that the ceilings are sufficiently high.

6.3.6 Temporal Convergence

We run the simulations from t = 0M to t = 20000M . The accretion rate, the height-

and ϕ−averaged plasma β, and other disk parameters, fluctuate turbulently about their

mean values. The simulation reaches a quasi-steady state, when the mean parameter value

are time-independent. Figure 6.3 shows the accretion rate and height- and ϕ−averaged

β at the event horizon as a function of time for all five models. We take the period from

t = 14000M to t = 20000M to define steady state.

As shown in Penna et al. (2010), for disk models like the one considered, the disk

outside the innermost stable circular orbit (ISCO) behaves like the α-disk model with
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Figure 6.2.— Ratios of b2/ρ, b2/ug, and ug/ρ versus θ. Black curves correspond to different

radii in the flow; from top to bottom, r = 4, 6, 8, 10, 12, and 14M . The data is time-averaged

over the steady state period of the flow, from t = 14000M to 20000M . Numerical ceilings

constrain the solution to lie below the dashed red lines, but we see that the solution does

not approach these limits.
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α ∼ 0.1 across disk thicknesses of h/r ∼ 0.05− 0.4. This allows one to accurately infer the

timescale for reaching “inflow equilibrium,” corresponding to a quasi-steady flow across all

quantities, at a given radius. For h/r ∼ 0.3 by t ∼ 15000M -20000M (the simulation runs

till 20000M , but the initial 5000M are transients not necessarily associated with achieving

inflow equilibrium for a simple viscous disk), we use the results in Appendix B of Penna

et al. (2010) and find that inflow equilibrium is achieved within a radius of r ∼ 25M -30M

for models with a∗ ∼ 1 and r ∼ 35M for models with a∗ ∼ 0. Even for a doubling of the

viscous timescale, inflow equilibrium is achieved by r ∼ 20M -25M depending upon the

black hole spin. This motivates using an analytical extension of the simulation solution for

radii beyond r ∼ 25M as described later in § 6.4.2.

6.3.7 Evolved Disk Structure

Figure 6.4 shows matter stream lines as vectors and number density ne as greyscale

map. The large scale vortices existing on a single time shot (panel (a)) almost disappear,

when averaged over 6000M (panel (b)) in between 14000M and 20000M . The density

is the highest in the equatorial plane on average, but deviations are present on the

instantaneous map. The ISCO does not have any special significance: density and internal

energy density increase through ISCO towards the black hole horizon.

Figure 6.5 shows magnetic field lines as vectors and comoving electromagnetic energy

density ∝ b2 as a greyscale map. The structure of magnetic field at early times remembers

the initial multi-loop field geometry (Penna et al., 2010), but switches at late times to

a helical magnetic field structure resembling a split-monopole in meridional projection.

Such switching of magnetic field structure suggests that final helix with projected split
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Figure 6.3.— Accretion rate and height- and ϕ−averaged β versus time at the event horizon

for all five models: a∗ = 0 (dotted black), a∗ = 0.5 (solid red), a∗ = 0.7 (long-dashed green),

a∗ = 0.9 (short-dashed brown), and a∗ = 0.98 (dot-dashed orange).
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monopole is a universal configuration for any vertical flux being dragged into the black

hole. The magnetic field structure of a single snapshot (panel (a)) looks quite similar to

the structure of the linear average between 14000M and 20000M (panel (b)). The polar

region of the flow has the strongest magnetic field.

6.4 Averaged Dynamical Model

We now discuss the link between the numerical simulations and the averaged

dynamical model. We need to decide on the averaging, especially of the magnetic field,

extend the simulations to large radii, and define the electron temperature.

6.4.1 Averaging

We need the time-averaged dynamical model for the purpose of analyzing the whole

model parameter space of spin a∗, inclination angle θ, accretion rate Ṁ , and ratio of

proton to electron temperatures Tp/Te computed at 6M . As we will show later, it is not

computationally viable to surf this parameter space, so instead average fluxes are computed

over the series of simulation snapshots. The average model incorporates temporal averages

at each point in the space of number density n, velocity uα, and internal energy density

ug. There is no unique approach to averaging the magnetic field b, the results may depend

on the approach employed. We choose one reasonable prescription and test the resultant

steady-state dynamical model.

For averaging b is computed at each point and at each time in the instantaneous

comoving locally flat reference frame. The magnetic field randomly changes orientation in

the midplane with time due to turbulence. So, the linear time average would underestimate
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Figure 6.4.— Stream lines of velocity (red vectors) and number density ne (greyscale map)

for spin a∗ = 0.9 at ϕ = 0 in the meridional plane: single timeshot at t = 14000M on the

upper (a) panel and time average between t = 14000M and t = 20000M on the lower (b)

panel. The correspondent calibration bars of ne are shown on the right. Number density is

normalized by its maximum value.
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Figure 6.5.— Magnetic field lines (red vectors) and comoving electromagnetic energy density

∝ b2 (greyscale map) for spin a∗ = 0.9 at ϕ = 0 in the meridional plane (rc as cylindrical

radius): single timeshot at t = 14000M on the upper (a) panel and time average between

t = 14000M and t = 20000M on the lower (b) panel. The correspondent calibration bars

of comoving b2 are shown on the right. Magnetic field energy density is normalized by its

maximum value.
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the magnetic field and would not be independent of averaging period. It is more viable

to modify the linear averaged b at each point by the value of f =
√
< b2 >t / < b >2

t

computed at that point. Then the dynamical model has an increased field bRMS = f < b >t

with a strength typical for a single snapshot, but likely more uniform in direction than b

in a single snapshot. We call the latter the RMS-field model. We run radiative transfer

on the top of each set of dynamical models the RMS-field averaging. To estimate the

effect of using the RMS-field model, we compute radiative transfer also for the models

with linear-averaged b-field. Averaging is done over 200 snapshots during the steady state

period between t = 14000M and t = 20000M . A detailed comparison of how different

averaging methods affect the polarized radiative transfer will be presented in a follow-up

paper.

6.4.2 Extension to Large Radii

The flow is evolved in a quasi-steady state for 6000M from 14000M until 20000M ,

which corresponds to 8 orbits at r = 25M . The flow is not sufficiently settled at larger

radii, however, some Faraday rotation might happen and some emission might occur

outside 25M. Thus, we extend the dynamical model to larger radii r > 25M in a reasonable

way and check in Appendix 6.9 how much the various extensions change the results of

radiative transfer. The boundary of radiative transfer is situated at r = 20000M. The

profiles of number density ne, internal energy density ug, magnetic field b and velocity v

are extended as power-laws until radius r = 20000M. The relevant power-law β is obtained

for number density by matching the known value ne = 130cm−3 at about 1.5′′ ≈ 3 · 105M

(Baganoff et al., 2003) and the average ne,cut value at r = 25M in the equatorial plane for

each model. The value of β may be different for different models. The radial flow velocity
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vr is then obtained from the continuity relation in the equatorial plane nevrr
2 = const.

The power-law of internal energy density ug is obtained in a similar way by matching

the values Te = Tp = 1.5 · 107 K and ne = 130cm−3 at 3 · 105M (Baganoff et al., 2003;

Shcherbakov & Baganoff, 2010). The extensions of other flow velocities and magnetic field

are fixed in turn. The meridional physical velocity is extended as vθ̂ ∝ (r/M)−3/2, toroidal

as vϕ̂ ∝ (r/M)−1/2, where the relationship vî ≈ ui
√
gii is used to connect the 4-velocity

components with physical velocity components. All components of comoving magnetic field

are extended as br, bθ, bϕ ∝ (r/M)−3/2. This power-law slope is similar to the one observed

in the simulations between 15M and 25M . However, this choice will likely underestimate

the magnetic field at large radii, since the slope is shallower for equipartition assumption

b ∝
√
nTp ∝ (r/M)−1 for n ∝ (r/M)−1. Exploration of various extensions of the magnetic

field will be the topic of future studies.

After defining the extension power-laws for quantities in the equatorial plane, we

extend the quantities radially at arbitrary θ and ϕ in a continuous way. For example, for

density at arbitrary θ and ϕ and r > 25M we have

ne(r, θ, ϕ) = ne(25M, θ, ϕ)
( r

25M

)−β
, (6.11)

where ne(25M, θ, ϕ) is taken from the simulation. We similarly extend other quantities. As

we will show in Appendix 6.9, reasonable variations in power-law indices bear minimum

influence on radiation intensities, linear and circular polarization fluxes.

6.4.3 Electron Temperature

Neither the proton Tp nor electron Te temperatures are given directly by the

simulation. However, it is crucial to know the electron temperature Te to determine
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the emission. Our solution is to split the total internal energy density ug, given by the

simulation and power-law extension, between the proton energy and the electron energy.

The energy balance states

ug
ρ

≡ up,g + ue,g
ρ

= cpkBTp + cekBTe, (6.12)

where cp = 3/2 and ce ≥ 3/2 are the respective heat capacities, ρ is the rest-mass density,

and kB is Boltzmann’s constant. The difference of temperatures Tp − Te is influenced by

three effects: equilibration by Coulomb collisions at large radii, the difference in heating

rates fp and fe of protons and electrons operating at intermediate radii, and the difference

in heat capacities operating close to the BH. The effect of radiative cooling is excluded

from the list, since, according to Sharma et al. (2007a), the radiative efficiency of the flow

is negligible for realistic Ṁ . 10−7M⊙year
−1. The aforementioned important effects can

be incorporated into an equation as

vr
d(Tp − Te)

dr
= −νc(Tp − Te) + (6.13)

+

(
1

cp

fp
fp + fe

− 1

c′e

fe
fp + fe

)
vr
d(ug/ρ)

kBdr
,

where

νc = 8.9 · 10−11

(
Te

3 · 1010

)−3/2 ne
107

(6.14)

is the non-relativistic temperature equilibration rate by collisions (Shkarofsky et al.,

1966), all quantities being measured in CGS units. We consider protons to always have

non-relativistic heat capacity and collisions to always obey the non-relativistic formula.

The magnitudes of errors introduced by these simplification are negligible. The exact

expressions for total electron heat capacity and differential heat capacity are approximated

as

ce =
ue,g/ρ

kBTe
≈ 3

2

0.7 + 2θe
0.7 + θe

, (6.15)
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c′e =
d(ue,g/ρ)

kBdTe
≈ 3− 0.735

(0.7 + θe)2
(6.16)

correspondingly with the error < 1.3%, where

θe =
kBTe
mec2

(6.17)

is the dimensionless electron temperature. It was recently shown (Sharma et al., 2007a)

that the ratio of heating rates in the non-relativistic regime in a disk can be approximated

as

fe
fp

= C

√
Te
Tp

(6.18)

with a constant C. This formula is adopted in the relativistic regime as well, since

no better prescription is available. Sharma et al. (2007a) found the value C = 0.33 in

simulations, whereas we find C = 0.40 − 0.45 for the best-fitting models (see § 6.7). The

proton and electron temperatures are determined at each point in the following way. We

first take an averaged model (see Subsection 6.4.2) of a simulation with spin a∗ extended to

r = 20000M . Then we compute azimuthal averages of radial velocity vr, number density

ne, and ug/ρ at the equatorial plane, extend them as power laws to rout = 3 · 105M , and

solve the equations (6.12,6.13) from rout down to the inner grid cell point. Temperatures

are set to Te = Tp = 1.5 · 107 K at rout (Baganoff et al., 2003; Shcherbakov & Baganoff,

2010). On the next step we make a correspondence of the values of ug/ρ to the calculated

Te and Tp and define functional dependence Te = Te(ug/ρ) and Tp = Tp(ug/ρ). At

each point of the simulation (including off the equator), we draw temperatures from

this correspondence. Typical profiles of proton and electron temperatures are shown on

Figure 6.6. Temperatures stay equal until ∼ 104M due to collisions despite different

heating prescriptions. Within 3 · 103M the timescale of collisional equilibration becomes

relatively long and electrons become relativistic, thus Te drops down below Tp. We take
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the inner part within r < 20000M of the electron and proton temperature profiles to

conduct the radiative transfer.
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Figure 6.6.— Temperatures of protons Tp (upper red line) and electrons Te (lower blue

line) as functions of radius for heating parameter C = 0.414 and accretion rate Ṁ =

1.04 × 10−8M⊙year
−1, which leads to Tp/Te = 17.6 and Te = 4.2 · 1010 K at r = 6M .

The dynamic RMS-field model with this heating prescription, this accretion rate, and spin

a∗ = 0.9 provides the fit with the lowest χ2 to polarization observations (see § 6.7).

For a given accretion rate there exists a unique dependence of the ratio of temperatures

Tp/Te at 6M on the heating constant C. Thus, we interchangeably refer to the ratio of

temperatures Tp/Te at 6M or the correspondent heating constant C. We commonly use
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the ratio of temperatures as a more straightforward quantity.

6.5 General Relativistic Polarized Radiative Transfer

General relativistic polarized radiative transfer is an essential tool for converting

the dynamical model of an accretion flow into a set of observable quantities (Broderick

et al., 2009a; Gammie & Leung, 2010; Shcherbakov & Huang, 2011). We closely follow

Shcherbakov & Huang (2011) for the transfer technique. Similarly to Huang et al. (2009a),

we define the polarized basis in the picture plane, where one vector points North, another

vector points East, and the wavevector points towards the observer. We parallel transport

this basis in the direction of the black hole and do the radiative transfer along the ray

in the opposite direction. At each point along the ray we go to the locally-flat comoving

frame, calculate the angles between the magnetic field and basis vectors, and compute

the Faraday conversion, Faraday rotation, emissivities, and absorptivities. This approach

appears no harder computationally compared to the covariant calculation of angles without

the locally flat comoving frame (Broderick et al., 2009a; Huang et al., 2009a).

Only our calculations of plasma response is different from Shcherbakov & Huang

(2011). That paper offered a way to find exact emissivities, absorptivities, Faraday rotation,

and conversion coefficients for thermal and other isotropic particle distributions. Here, for

simplicity, we employ fitting formulas for Faraday rotation and Faraday conversion and

synchrotron approximation for emissivities in thermal plasma. We define

X =
2

3

ν

νBγ2 sin θB
, (6.19)

where θB is k-b angle, γ is electron gamma factor, and νB = eb/(2πmec) is the cyclotron

frequency. Then following Legg & Westfold (1968); Melrose (1971), we write down
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emissivities in I, Q, and V modes as

εI =

√
3

2

e2

c
νB sin θB

∫ +∞

1
dγN(γ)X

∫ +∞

X
dzK5/3(z),

εQ =

√
3

2

e2

c
νB sin θB

∫ +∞

1
dγN(γ)XK2/3(X), (6.20)

εV =
2√
3

e2

c
νB cos θB

∫ +∞

1
dγ
N(γ)

γ
×

×
[
XK1/3(X) +

∫ +∞

X
dzK1/3(z)

]
.

Here Kz(x) is the Bessel function of the 2nd kind of order z. We employed IEEE/IAU

definitions of Stokes Q, U , and V (Hamaker & Bregman, 1996), also chosen in Shcherbakov

& Huang (2011): counter-clockwise rotation of electric field as seen by the observer

corresponds to positive V > 0. Under this definition the sign of V emissivity (6.20) is

opposite that in standard theoretical textbooks (Rybicki & Lightman, 1979). A variation

of emissivity formulas (6.19,6.20) exists: Sazonov (1969); Pacholczyk (1970) effectively

define X = 2ν/(3νB(γ − 1)2 sin θB), integrating over particle energy instead of γ. This

approximation appears to give significantly larger errors at low particle energies.

Next, one needs to specify, which particle distribution N(γ) to use. Various

N(γ) correspond to several synchrotron approximations for thermal plasmas. The

ultrarelativistic approximation (Pacholczyk, 1970; Huang et al., 2009a) with N(γ) =

exp(−(γ − 1)/θe)(γ − 1)2/2/θ3e gives the simplest distribution. However, the exact thermal

distribution of particles

N(γ) = γ
√
γ2 − 1

exp(−γ/θe)
θeK2(θ

−1
e )

(6.21)

allows for more precise computation of radiation. Synchrotron emissivities based on the

equations (6.19,6.20) with the exact thermal distribution (6.21) agree with the exact

cyclo-synchrotron emissivities εI , εQ, and εV (Leung et al., 2009; Shcherbakov & Huang,
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2011) to within 2% for typical dynamical models and frequencies > 100 GHz. Emissivities

integrated over the ultrarelativistic thermal distribution normally have ∼ 10% error.

Thermal absorptivities are found from emissivities (6.20) via Kirchhoff’s law

αI,Q,V = εI,Q,V /Bν , (6.22)

where Bν = 2kBTeν
2/c2 is the source function for low photon energies hν ≪ kBTe. Faraday

rotation ρV and Faraday conversion ρQ coefficients are taken from Shcherbakov (2008b):

ρV = g(Z)
2nee

2νB
mecν2

K0(θ
−1
e )

K2(θ
−1
e )

cos θ, (6.23)

ρQ = f(Z)
nee

2ν2B
mecν3

[
K1(θ

−1
e )

K2(θ
−1
e )

+ 6θe

]
sin2 θ.

Here

Z = θe

√√
2 sin θ

(
103

νB
ν

)
(6.24)

and

g(Z) = 1− 0.11 ln(1 + 0.035Z),

f(Z) = 2.011 exp

(
−Z

1.035

4.7

)
− (6.25)

− cos

(
Z

2

)
exp

(
−Z

1.2

2.73

)
− 0.011 exp

(
− Z

47.2

)
are the fitting formulas for deviations of ρV and ρQ from analytic results for finite ratios

νB/ν. The deviation of f(Z) from 1 is significant for the set of observed frequencies ν,

temperatures θe, and magnetic fields found in the typical models of Sgr A*. These formulas

constitute a good fit to the exact result for the typical parameters of the dynamical model

(Shcherbakov, 2008b).

With all the sophisticated physics incorporated into the radiative transfer, the speed

of the numerical code becomes an essential constraint. Polarized radiative transfer can
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take much longer to perform compared to non-polarized radiative transfer when using

an explicit integration scheme to evolve the Stokes occupation numbers NQ, NU , and

NV . Large Faraday rotation measure and Faraday conversion measure lead to oscillations

between occupation numbers. One of the solutions is to use an implicit integration scheme,

while another solution is to perform a substitution of variables. In the simple case of

Faraday rotation leading to interchange of NQ and NU , the obvious choice of variables is

the amplitude of oscillations and the phase. Thus the cylindrical polarized coordinates

arise

NQ = NQU cosϕ, (6.26)

NU = NQU sinϕ.

Then the amplitude NQU slowly changes along the ray and the angle ϕ changes linearly,

which gives an improvement in speed. In the presence of substantial Faraday conversion,

the polarization vector precesses along some axis in Poincaré sphere, adding an interchange

of circularly and linearly polarized light. Polar polarized coordinates would be more

suitable in this case:

NQ = Npol cosϕ sinψ,

NU = Npol sinϕ sinψ, (6.27)

NV = Npol cosψ,

where Npol is the total polarized intensity, the change of ϕ angle is mainly due to Faraday

rotation and ψ angle changes owing to Faraday conversion. The application of this

technique speeds up the code exponentially at low frequencies ν < 100 GHz.

Besides improving the speed, we perform a number of convergence tests to make sure

the final intensities are precisely computed. Radiative transfer involves shooting a uniform
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grid of N × N geodesics from the picture plane. Even though N = 150 (Dexter et al.,

2009) maybe a better number to use for a single snapshot, N = 111 works well for the

averaged smooth flow giving an accuracy of ∆(χ2/dof) ≤ 0.02 near best-fitting models.

The metrics of relative integration error χ2
H/dof is defined in Appendix 6.9, where the

convergence tests are described. The size of the integration domain is taken to be a square

in the picture plane with a side

a[M ] = 16 + 2

(
600

ν[GHz]

)1.5

(6.28)

in the units of rg ≡ M , where frequency ν is in GHz. The size based on formula (6.28)

is larger than the photon orbit visible diameter dph ≈ 10.4M at the same time following

the intrinsic size dependence on frequency (Shen et al., 2005; Doeleman et al., 2008) at

low frequencies. Justification of this size by convergence tests is given in Appendix 6.9. A

surprisingly important radiative transfer parameter is the distance from the BH, where

intensity integration starts. The dependence of synchrotron emissivity on temperature and

magnetic field strength is so strong that it negates the effect of gravitational redshift close

to the BH. The accuracy of ∆(χ2/dof) ≤ 0.02 is achieved in sub-mm for computation out

from rmin = 1.01rH , where rH =M(1 +
√

1− a2∗) is the horizon radius. Higher rmin leads

to larger error ∆(χ2/dof) ∼ 0.03 (see Appendix 6.9).

6.6 Statistical Analysis

Statistical analysis is a necessary tool to compare the model predictions to observations

and to discriminate between models. However, it has only recently been applied to the

accretion flow in the Galactic Center (Dexter et al., 2009; Broderick et al., 2009a;

Shcherbakov & Baganoff, 2010). When the number of model parameters is large (Huang et
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Figure 6.7.— Best fits to the observed fluxes, LP and CP fractions by best RMS-field models

for each spin. The inclination angle θ, accretion rate Ṁ , ratio of temperatures Tp/Te were

adjusted for each spin to minimize χ2. Fits to total flux F are in the upper left panel,

LP fraction in the lower left, and CP fraction in the lower right. Best RMS-field model

with spin a∗ = 0.9 (solid dark red) has χ2/dof = 4.05, spin a∗ = 0.7 (long-dashed green) —

χ2/dof = 5.37, spin a∗ = 0.5 (short-dashed brown) — χ2/dof = 5.77, spin a∗ = 0 (solid light

cyan) — χ2/dof = 9.03, spin a∗ = 0.98 (dot-dashed orange) — χ2/dof = 4.85. The upper

right panel shows the dependence of EVPA angle on frequency for the best models. Note,

that EVPA angles are not included into our χ2 fitting procedure. The thick blue curve

represents observations. Simulated EVPA curves are arbitrarily shifted to approximate

EVPA at 349 GHz. The addition of an external (to the emitting region) Faraday rotation

screen helps to fit EVPA(349 GHz)− EVPA(230 GHz).
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al., 2009a) or the number of considered observations is small (Moscibrodzka et al., 2009),

it is possible to find an exact fit to the data or say that for some model parameters the

fit does not exist. Instead, we consider a broad range of observations and explore models

with only 4 parameters: spin a∗, inclination angle θ, accretion rate Ṁ , ratio of proton to

electron temperature Tp/Te at 6M .

We have proven in § 6.2 that samples of total fluxes, log LP and EVPA at each

frequency are consistent with a Gaussian distribution. Thus, we can directly apply χ2

statistics. We are comparing means of observed variable fluxes to fluxes computed for

the averaged simulation models. We leave the comparison of the observed samples to the

samples generated over many snapshots to future work. We define χ2
F for flux fitting as

χ2
F =

7∑
i=1

(Fi,sim − Fi,obs)
2

σ(F )2
, (6.29)

for the set of 7 frequencies ν = 88, 102, 145, 230, 349, 680, and 857 GHz, where σF are the

errors of the means. We add LP fraction at 88, 230, and 349 GHz and CP fraction at 230

and 349 GHz into the full χ2 :

χ2 = χ2
F +

3∑
i=1

(log(LPi,sim)− log(LPi,obs))
2

σ(log(LP))2

+
2∑

i=1

(CPi,sim − CPi,obs)
2

σ(CP)2
. (6.30)

Then we take the number of degrees of freedom to be dofF = 7 − 3 = 4 for flux

fitting and dof = 12 − 3 = 9 for fitting all polarized data. We compute the probability

density ρ(χ2) = ρ(χ2|a∗, θ, Ṁ , C) of the data, given a model, from the correspondent

χ2 distributions.This is a function of spin, inclination angle, accretion rate, and heating

constant. Now the search for minimum χ2 is fully defined. The probability density of

model given data ρ(a∗, θ, Ṁ , C|χ2) is needed for confidence intervals calculation. It is
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found by Bayes’ theorem with the use of priors (Broderick et al., 2009a)

ρ(a∗, θ, Ṁ , C|χ2) =
ρ(χ2)π(θ)π(a∗)π(Ṁ)π(C)∫

ρ(χ2)π(θ)π(a∗)π(Ṁ)π(C)dθda∗dṀdC
, (6.31)

where we assumed a separable prior π(θ, a∗, Ṁ , C) = π(θ)π(a∗)π(Ṁ)π(C). We expect no

preferred spin orientation, which requires a uniform distribution over the solid angle and

the prior π(θ) = sin θ. Following Broderick et al. (2009a) we take a uniform prior on

spin π(a∗) = 1. The accretion rate Ṁ is largely uncertain. For our analysis we take the

logarithmic prior π(Ṁ) = Ṁ−1, which is the best non-informative prior for large range of

possible values (Jaynes & Bretthorst, 2003). The value of the heating constant C = 0.33

cited by Sharma et al. (2007a) was based on only a small part of total energy dissipation

and may be unreliable. A similar prior π(C) = C−1 can be taken for the heating constant.

The expectation value of any quantity Q at certain spin a∗ is calculated as the integral

⟨Qa∗⟩ =
∫ ∫ ∫

Qρ(a∗, θ, Ṁ , C|χ2) sin θdθ
dC

C

dṀ

Ṁ
, (6.32)

and the confidence intervals are found analogously.

We explore the values of C from 0.20 to 0.75, which leads to Tp/Te at 6M between 6

and 60. All models fitting Fν SED with C = 0.20 underpredict the linear polarization and

all models with C = 0.75 overpredict the linear polarization, thus we cover all good models

by using a wide range of C. A full analysis in the space of accretion rate Ṁ is not possible

due to limited computational resources. Instead, for each spin a∗, heating constant C, and

inclination θ we find the best χ2
F for the values of flux Fν (see eq.6.29) and explore the

region close to the best fit. As the dependence of flux on accretion rate is uniform, this

guarantees that we explore all regions with good full χ2 defined by equation (6.30). Even

if there is some good fit to LP and CP curves, but the flux values are either overpredicted

or underpredicted, then the total χ2/dof would be substantially larger than unity.
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6.7 Results

In previous sections we described observations, numerical simulations of the dynamical

structure, averaged model, polarized radiative transfer, and statistical methods to compare

the simulated spectra with the observations. Now we are ready to present the results of

such a comparison, done for the first time for GR polarized radiative transfer over the

model derived from 3D GRMHD simulations. We are able to achieve χ2/dof ∼ 4 fits to

observations and constrain some model parameters.

Figure 6.7 shows best fits to observations by RMS-field (RMS magnetic field strength,

mean direction) models with five different spins. Inclination angle θ, accretion rate Ṁ ,

heating constant C were adjusted to reach the lowest χ2. The best RMS-field model with

spin a∗ = 0.9 (solid dark red) has χ2/dof = 4.05, spin a∗ = 0.7 (long-dashed green) —

χ2/dof = 5.37, spin a∗ = 0.5 (short-dashed brown) — χ2/dof = 5.77, spin a∗ = 0 (solid

light cyan) — χ2/dof = 9.03, spin a∗ = 0.98 (dot-dashed orange) — χ2/dof = 4.85. Let

us discuss how well the models with different spins perform. Fits to fluxes Fν on upper

left are not substantially different, though models with higher spins perform better at

both low and high frequencies. Larger deviations can be seen on LP (lower left) and

CP (lower right) plots. Models with high spins require lower accretion rate/density to

fit the flux spectrum. Then they are not subject to Faraday depolarization, which leads

to decrease of LP at low ν, and the models end up having larger linear polarization

fractions at 88 GHz. Not all models reproduce the observed decrease of mean LP fraction

between 231 GHz and 349 GHz groups. The discrepancies in fitting CP fraction are

also large: no low−χ2 model can reproduce CP = −1.5% at 349 GHz: best RMS-field

models have |CP| < 1% at this frequency. However, only low spin solutions reproduce
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the correct sign and the order of magnitude of difference between EVPA(349 GHz) and

EVPA(230 GHz), whereas the models with higher spin have shallower difference of the

opposite sign EVPA(349 GHz)− EVPA(230 GHz) < 0.

The best RMS-field model with spin a∗ = 0.9 has inclination angle θ = 52◦, position

angle PA = 121◦ ± 20◦, accretion rate Ṁ = 1.04 × 10−8M⊙year
−1, ratio of temperatures

Tp/Te = 17.6 at 6M , which gives Te = 4.2 · 1010 K at that distance from the center in

equatorial plane. In turn, spin a∗ = 0.9 model with linear-averaged b reaches minimum

χ2/dof = 5.56 at θ = 55◦, Ṁ = 1.5× 10−8M⊙year
−1, Te = 3.0 · 1010 K at 6M . Thus, the

best linear-averaged model with same spin a∗ = 0.9 has 1.5 times larger accretion rate

compared to RMS-field model, but also has 1.4 times lower electron temperature. The best

RMS-field model is more edge-on.

Let us now separate the physical effects responsible for the observed polarized

quantities. Several comparably strong radiative transfer effects may account for

observed polarized fluxes. Let us consider the production of circular polarization in the

flow. Figure 6.8 shows the consequences of switching various physical effects off for the

best-fitting RMS-field model with spin a∗ = 0.9. The solid curve is the result with all

physics on. The long-dashed line below is produced, when circular emissivity is set to

εV = 0. The short-dashed line corresponds to zero Faraday conversion (ρQ = 0). The

changes for the emissivity switched off are small, whereas setting Faraday conversion to

zero leads to several times smaller CP of different sign, thus most of CP in this model

is produced by Faraday conversion. It would be incorrect, however, to think that the

simple linear to circular conversion explains the observed CP. The dot-dashed line in

Figure 6.8 shows the CP fraction, when Faraday rotation is switched off (ρV = 0). The

effect of Faraday rotation is insignificant at ν < 150 GHz, but the rotation of the plane of
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Figure 6.8.— Contributions of different effects to CP fraction dependence on frequency for

best-fitting a∗ = 0.9 model. Shown are observations (blue error bars), the best fit model

(solid red line), the same dynamical model computed with zero V emissivity εV = 0 in

radiative transfer so that CP is produced by Faraday conversion (long-dashed green), the

same model with zero Faraday conversion ρQ = 0 (short-dashed brown), and the same

model without Faraday rotation ρV = 0 (dot-dashed orange). Emissivity in circular V

mode contributes little to the observed CP. Surprisingly, CP does not change sign as a

function of frequency. The combined action of Faraday rotation and Faraday conversion

takes places around ν = 145 GHz, the sign of V changes without Faraday rotation at that

frequency.
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Figure 6.9.— Contributions of different effects to LP fraction (on the left) and EVPA angle

(on the right) dependencies on frequency for the best-fitting RMS-field a∗ = 0.9 model.

Shown are observations (blue error bars and thick blue line), the best fit model (solid red

line), the same dynamical model computed without Faraday rotation ρV = 0 in radiative

transfer (long-dashed green), and the same dynamical model with 10 times stronger Faraday

rotation ρ′V = 10ρV . Beam depolarization is weak without Faraday rotation and LP stays

high at low frequencies. The change of the EVPA due to Faraday rotation is comparable

to the difference of intrinsic emission on EVPA, but has the opposite sign. The best-fitting

model with spin a∗ = 0.9 has about 10 times lower than observed Faraday rotation.



Chapter 6: Constraining Sgr A* by 3D GRMHD and Polarized Transfer 205

linear polarization simultaneous with conversion between linear and circular polarizations

produces a unique effect at higher ν. This is the so-called “rotation-induced conversion”

(Homan et al., 2009). The expected sign oscillations of V with frequency do not happen,

whether or not Faraday rotation is involved. The best spin a∗ = 0.9 model exhibits

qualitatively similar variations in CP.

On Figure 6.9 we illustrate the influence of Faraday rotation on LP fraction (left

panel) and EVPA angle (right panel). The solid curves have all physics on for the best

RMS-field model with spin a∗ = 0.9. The dashed lines are computed for switched off

Faraday rotation (ρV = 0). The Faraday rotation is negligible at high frequencies and

curves coincide at ν > 400 GHz. As the rotation of polarization plane is much stronger at

low ν, a significant phase shift accumulates between different rays at the low end of the

spectrum and cancellations of LP become strong at ν < 150 GHz. Thus we illustrate the

effect of Faraday depolarization (Bower et al., 1999a). In the absence of Faraday rotation

the dependence of EVPA on frequency is not a constant line: the variations of intrinsic

emitted EVPA are significant. Thus, the change of EVPA with ν should not always be

ascribed to the effect of Faraday rotation. The positive observed slope of EVPA with

ν, acquired due to negative Faraday rotation ρV , is comparable to the slope of intrinsic

emitted EVPA. The dot-dashed lines correspond to the model, where Faraday rotation is

artificially increased 10 times. The model is able to fit EVPA curve, but suffers substantial

beam depolarization and underpredicts LP at low frequencies.

Besides computing the best fit models, we examine regions of parameter space near

those best fits in search for anomalies. For example, if there is a coincidental cancellation

in one of the models, then the close-by models have much higher χ2/dof and such a best

fit may be unreliable as it is accidental. On the Figure 6.10 we plot contours of χ2/dof
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Figure 6.10.— Behavior of χ2 near the best-fitting models with spin a∗ = 0.9: RMS-field

model with RMS-strength magnetic field b (left column) and model with linear averaged

b (right column) with changing accretion rate Ṁ and ratio of temperatures Tp/Te at 6M .

Contours of χ2
F /dofF for flux fitting are in the upper row, contours for full χ2/dof are in

the lower row.
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Figure 6.11.— Behavior of χ2 near the best-fitting models with spin a∗ = 0.9 : RMS-field

model with RMS magnetic field b (left column) and a model with linear averaged b (right

column) with changing ratio of temperatures Tp/Te at 6M and inclination angle of BH spin

θ. Contours of χ2
F /dofF for flux fitting are in the upper row, contours for full χ2/dof are

in the lower row.
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near best-fitting RMS-field model with spin a∗ = 0.9 (left column) and linear-averaged

spin a∗ = 0.9 model (right column) in the space of ratio of temperatures Tp/Te at 6M and

accretion rate Ṁ . The contours of χ2/dof are color-coded from highest (red) to lowest

(blue) values. The upper row shows χ2
F /dofF for flux Fν fitting, whereas the lower row

shows the full χ2/dof. Plots of χ2
F /dofF (panels (a) and (c)) reveal significant degeneracy

between the electron temperature and accretion rate: lower Te and higher Ṁ or higher Te

and lower Ṁ both fit the flux quite well. The degeneracy breaks for the full χ2/dof, when

fitting LP and CP, which fixes the matter density. The well-fitting phase volume in the

parameters of Tp/Te and Ṁ appears to be similar for both models (panels (b) and (d)).

No clear anomalies can be seen, thus none of the fits seems to be accidental. In Figure 6.11

we plot the contours of χ2/dof and χ2
F /dofF for the same models in the space of the ratio

of temperatures Tp/Te at 6M and spin inclination angle θ. First, note that good fits for

χ2
F /dofF (panels (a) and (c)) have almost constant electron temperature Te correspondent

to a range of inclination angles θ. A much smaller range in θ is allowed according to full

χ2/dof (panels (b) and (d)) with similar behavior for RMS-field spin and linear-averaged

spin solutions with a∗ = 0.9.

We illustrated in Figure 6.7 how the best-fitting models with different spins perform.

Now we visualize in Figure 6.12 the differences between χ2/dof and χ2
F /dofF for the

best-fitting models. Solid curves on both panels represent RMS-field models, whereas

dashed curves represent models with linear-averaged magnetic field. Blue curves on both

panels show the total reduced χ2/dof, whereas red curves on the left panel correspond

to χ2
F /dofF for flux spectrum fitting. Panel (a) shows the best χ2

F /dofF and χ2/dof as

functions of spin a∗. We see that the best χ2
F /dofF for flux fitting is below unity for high

spins a∗ = 0.7, 0.9, 0.98, whereas good fits cannot be achieved for low spins a∗ = 0, 0.5.
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Figure 6.12.— The lowest reduced χ2 for fits with each spin a∗. Blue upper curves corre-

spond to total χ2/dof for fitting total flux at 7 frequencies, LP fraction at 3 frequencies and

CP at 2 frequencies. Red lower curves correspond to χ2
F /dofF for fitting of total flux at

7 frequencies. Solid curves correspond to RMS-field b models, whereas dashed lines show

linear-averaged b models. Reduced χ2 for spins a∗ = 0, 0.5, 0.7, 0.9, 0.98 are shown on figure

(a) for the models averaged over the period 14000−20000M . Spin a∗ = 0.9 gives the lowest

reduced χ2. Reduced χ2 for spin a∗ = 0.9 are shown on panel (b) for RMS-field models av-

eraged over smaller intervals within the 14000− 20000M time-range. No significant secular

drift is present for converged simulations, though the variations of χ2/dof are quite large

reaching ±1.
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High spins are favored. The same is true when we fit polarized observations.

The RMS-field model with spin a∗ = 0.9 exhibits the lowest reduced χ2. However,

the value is not close to unity, which indicates significant room is available to improve the

model. The linear-averaged model with spin a∗ = 0.5 seems to have the lowest reduced χ2

over linear-averaged models. However, as discussed previously, we consider models with

the RMS-field version of b to be more physical compared to models with linear-averaged b,

thus we stick to RMS-field models in our analysis. We illustrate the stability of the best fit

on panel (b) of Figure 6.12. There we show the best χ2/dof for RMS-field models with spin

a∗ = 0.9 for several averaging periods. The periods have the duration 860M within the

range 14000− 20000M : 13900− 14760M interval, 14760− 15620M interval etc. The values

of χ2/dof are depicted on panel (b) at the interval middles: 14330M , 15190M etc. The

values of χ2/dof fluctuate between intervals by up to ∆χ2/dof ∼ 1, which is comparable

to the difference ∆χ2/dof = 1.5 between spin a∗ = 0.5 and spin a∗ = 0.9 models. Thus,

we can only conclude that the RMS-field model with spin a∗ = 0.9 is marginally better

than the models with spins a∗ = 0.5, 0.7, 0.98. Changes of best χ2/dof with time show no

secular trend, thus indirectly proving convergence of the simulations (see Section 6.3.6 for

the discussion of convergence).

There is another way to test the dynamical models against observations. The intrinsic

image size was recently measured (Doeleman et al., 2008) with the VLBI technique. Total

flux F = 2.4 Jy at 230 GHz and correlated flux Fcorr ≈ 0.35 Jy at 3.5 Gλ SMT-JCMT

baseline were simultaneously measured. We plot this correlated flux with 3σ error bar in

Figure 6.13 and compare it to simulated correlated fluxes, normalizing the total flux to

2.4 Jy. To simulate the correlated flux we follow Fish et al. (2009) and employ a Gaussian

interstellar scattering ellipse with half-widths at half-maximum 7.0× 3.8Gλ with position
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Figure 6.13.— Correlated fluxes as functions of baseline normalized to the 2.4 Jy total flux

for best-fitting spin a∗ = 0.9 model with linear averaged b (dashed lines) and the spin

a∗ = 0.9 RMS-field model with RMS b (solid lines). For each model the upper line shows

the smallest size (largest correlated flux) over all position angles of BH spin axis, the lower

dashed line shows the largest size (smallest correlated flux) over all position angles. An

observation from Doeleman et al. (2008) with 3σ error bars at baseline 3.5 Gλ is drawn for

comparison. Models fit quite well the observed emission region size.
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angle 170◦ east of north. We vary the position angle of BH spin and plot correlated flux

curves with the largest (solid line) and the smallest (dashed line) correlated flux at 3.5Gλ.

The correlated fluxes for spin a∗ = 0.9 best-fitting models are shown: blue (dark) lines

correspond to maximum correlated fluxes and red (light) lines correspond to minimum

correlated fluxes. Solid lines correspond to the RMS-field model and dashed lines to the

model with linear-averaged b. Both types of models are consistent with observations, but

slightly overproduce the correlated flux, which indicates the size of the shadow is slightly

underpredicted. We discuss the possible ways to reconcile observations and simulations in

the next section.

Having analyzed the best fits and compared the reduced χ2, we can make a

conservative estimate of the model parameters. Let us start with the inclination angle

of BH spin θ (θ = 90◦ for the edge-on disk). On Figure 6.14 we plot probability density

ρ(θ, a∗ = 0.9|χ2) for inclination angle for two models with spin a∗ = 0.9. This quantity

represents probability density of the model given the data (6.31) integrated over heating

constant and accretion rate

ρ(θ, a∗ = 0.9|χ2) ∝
∫ ∫

ρ(a∗ = 0.9, θ, Ṁ , C|χ2)dCdṀ. (6.33)

Both curves are normalized to give
∫
ρ(θ, a∗ = 0.9|χ2)dθ = 1. The solid line corresponds

to a RMS-field model, whereas the dashed line to a linear-averaged model. The probable

range of θ is quite small in each model, which gives tight constraints on θ in that particular

model. The confidence interval θ(RMS b) for a RMS-field spin a∗ = 0.9 model overlaps

with the interval for a linear-averaged model θ(lin b). Thus, a narrow conservative estimate

θest can be provided:

θ(RMS b) = 53◦ ± 3◦, (6.34)
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Figure 6.14.— Marginalized over heating parameter C and accretion rate Ṁ , the probability

densities ρ(θ, a∗ = 0.9|χ2) over inclination angle θ for spin a∗ = 0.9. Shown are peaks for

the RMS-field model (solid line) and linear-averaged model (dashed line). The peaks do

overlap, which allows for a robust estimate of the inclination angle. The values θ = 50◦−59◦

are allowed.
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θ(lin b) = 55◦ ± 4◦,

θest = 50◦ − 59◦.

The best θ for RMS-field models with spins a∗ = 0.5, 0.7, 0.98 are, correspondingly,

θ = 66◦, 62◦, 54◦. Thus, our conservative estimate is quite robust.

Likewise, we can calculate the expectation value and 90% confidence intervals for

electron temperature Te at 6M for spin a∗ = 0.9 models:

Te(RMS b) = (4.62± 0.56) · 1010 K, (6.35)

Te(lin b) = (2.86± 0.16) · 1010 K,

Te,est = (2.7− 5.2) · 1010 K.

The accretion rate Ṁ has large variations between models:

Ṁ(RMS b) = (1.09± 0.13)× 10−8M⊙year
−1, (6.36)

Ṁ(lin b) = (1.50± 0.15)× 10−8M⊙year
−1,

Ṁest = (0.9− 1.7)× 10−8M⊙year
−1.

The RMS-field model with spin a∗ = 0.5 gives very different accretion rate Ṁ(0.5)est ≈

4× 10−8M⊙year
−1.

There is one more quantity we can estimate: the position angle (PA) of BH spin.

Similarly to Huang et al. (2009a), we rely on observed intrinsic EVPA≈ 111.5◦ at 230 GHz

and EVPA≈ 146.9◦ at 349 GHz (see § 6.2). For the model to fit the difference in EVPA,

we add a Faraday rotation screen far from the BH with constant rotation measure (RM).

Then we compute the required RM and the intrinsic PA to fit the simulated EVPAs

at 230 and 349 GHz. The best-fitting RMS-field model with a∗ = 0.9 gives PA = 121◦
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east of north, whereas the best-fitting linear-averaged model with spin a∗ = 0.9 requires

PA= 123◦. The correspondent 90% confidence intervals are

PA(RMS b) = 121◦ ± 20◦, (6.37)

PA(lin b) = 123◦ ± 20◦,

PA(est) = 101◦ − 143◦,

where the error is dominated by the observational error of EVPA determination (see

Table 6.1). The estimated position still has large uncertainty, what precludes us from

tightening the size estimates (see Figure 6.13) from the models. It is reasonable to employ

the minimum and maximum correlated fluxes found over all orientations.

With the estimated orientation of the BH spin, we can plot an image of radiation

intensity from near the event horizon. Figure 6.15 shows images of total intensity Iν for

the spin a∗ = 0.9 best-fitting RMS-field solution on the upper left panel, the spin a∗ = 0.9

best-fitting linear-averaged solution on the lower left panel; LP intensity and CP intensity

plots for best spin a∗ = 0.9 RMS-field model are shown on the upper right and lower right,

correspondingly. Blue (predominant) color on CP plot depicts the regions with negative

CP intensity and red (subdominant) color depicts the regions with positive CP intensity.

The total V flux from this solution is negative (V < 0). The streamlines on LP plot are

aligned with EVPA direction at each point. The spin axis is rotated by PA = 121◦ east

of north for spin a∗ = 0.9 RMS-field solution and by PA = 123◦ for the linear-averaged

solution. The spin axis is inclined at θ to the line of sight, so that the either right (west)

or left (east) portions of the flow are closer to the observer. The color schemes on all the

plots are nonlinear with correspondent calibration bars plotted on the sides. The numbers

at the top of calibration bars denote normalizations.
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Figure 6.15.— Images of polarized intensities for the best-fitting models: total intensity for

spin a∗ = 0.9 linear-averaged model (lower left); intensities for a∗ = 0.9 RMS-field model:

total intensity (upper left), linear polarized intensity and streamlines along EVPA (upper

right), and circular polarized intensity (lower right). Distances are in the units of BH mass

M . Images are rotated in the picture plane to fit the best spin PA: PA = 121◦ for the

RMS-field model and PA = 123◦ for the linear-averaged model. Individual calibration bars

are on the sides of correspondent plots. The ill-defined polar region does not contribute

significantly to the emission.
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6.8 Discussion and Conclusions

Let us compare our results with estimates of Sgr A* accretion flow and BH parameters

made by other groups. Two separate searches for spin based on GR numerical simulations

have been reported so far: Moscibrodzka et al. (2009) and Dexter et al. (2010). The first

paper browses the set of spins from a∗ = 0.5 to 0.98 for 2D GRMHD simulations, fits

X-Ray flux, 230 GHz flux, and slope at this frequency, and finds at least one model for each

spin consistent with observations (see Table 3 therein). Their best-bet model has a∗ = 0.9.

Dexter et al. (2010) focuses on a set of 3D GRMHD, fits 230 GHz flux and size estimates

and provides the table of spin probabilities with a∗ = 0.9 again having the highest P (a).

If we were only to consider spectrum fitting, then our results would perfectly conform to

the picture with high spin a∗ ∼ 0.9 being most likely. When we fit spectrum, LP and CP

fractions, spin a∗ = 0.9 solutions also give lower reduced χ2. We are unable to provide

narrow constraints on a∗, and neither do other groups. Other spin estimates have been

based on analytic models. Broderick et al. (2009a, 2010) favor a∗ = 0 solutions, Huang

et al. (2009b) favor a∗ < 0.9 although they do not explore their full model parameter

space. Another poorly constrained quantity is the accretion rate. Our conservative

estimate Ṁest = (0.9 − 1.7) · 10−8M⊙year
−1 is broad. Good models in Moscibrodzka et

al. (2009) have similar Ṁ of Ṁ = 0.9 · 10−8M⊙year
−1, but Ṁ = 12 · 10−8M⊙year

−1 is

also found among good fits. Dexter et al. (2010) found relatively tight boundaries for 90%

confidence interval of Ṁ by looking at spin a∗ = 0.9 solutions by incorporating flow size

in χ2 analysis. Our estimate is consistent with, but slightly narrower than the full range

Ṁ = 5+15
−2 × 10−9M⊙year

−1 (90%) in Dexter et al. (2010). Note, that Dexter et al. (2009)

got much lower accretion rate Ṁ(0.9) = (1.0− 2.3)× 10−9M⊙year
−1 as they assumed the

equality of proton and electron temperatures Te = Tp.
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In addition to spin and accretion rate we can constrain inclination angle θ and electron

temperature Te at 6M . Our conservative estimate is θest = 50◦−59◦, which is the narrowest

of all estimates in the literature. This θ is fully consistent with the estimates θ = 50◦

in Broderick et al. (2009a); Dexter et al. (2010). Huang et al. (2009a) and Huang et al.

(2009b) favor slightly lower θ = 40◦, 45◦, but have large error bars. Inclusion of polarized

observations also puts stricter limits on Te. Moscibrodzka et al. (2009) and Dexter et al.

(2010) set constant Tp/Te, whereas Huang et al. (2009a) and us calculate the profile of Te.

In all models, Te is a shallow function of radius, which made Dexter et al. (2010) estimate

the “common” Te = (5.4 ± 3.0) × 1010 K, which is the quantity calculated supposedly

still at certain distance from the BH center. Setting this distance to 6M we arrive at the

consistent, but narrower conservative estimate Te,est = (2.7− 5.2)× 1010 K. There are two

kinds of constraints on BH spin position angle: 230 GHz correlated flux fitting and EVPA

fitting. The first path was adopted in Broderick et al. (2009a) and Dexter et al. (2010)

with the results PA = (−20◦)− (−70◦) = (110◦)− (180◦). These PAs agree quite well with

polarization data. Meyer et al. (2007) predicts the range PA = 60◦ − 108◦, whereas Huang

gets either PA ≈ 115◦ (Huang et al., 2009b) or PA ≈ 140◦ (Huang et al., 2009a) depending

on the model without calculating the range. Our estimate of PA = 101◦ − 143◦ is quite

narrow, and agrees well with Meyer et al. (2007) and other groups. Significantly larger

error bars, and the fact that very few size observations are available, make PA estimates

from size less reliable than those from EVPA. In addition, the size of the flow may depend

substantially on luminosity state (Broderick et al., 2009a) or the presence of non-thermal

structures, spiral waves, and other features.

In some astrophysical sources PA is directly known from spatially resolved jets, and

Sgr A* may be one such source. A tentative jet feature was revealed in X-rays by Muno et
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al. (2008), Fig. 8 with PAjet = 120◦. The mean of our conservative PA interval practically

coincides with PAjet, which provides support for a jet hypothesis for this feature.

Besides the estimates of accretion rate and flow properties based on the inner flow,

there exist estimates based on the outer flow. Shcherbakov & Baganoff (2010) constructed

an inflow-outflow model with conduction and stellar winds, which provided an excellent

agreement to X-ray surface brightness profile observed by Chandra. Their model had an

accretion rate Ṁ = 6 · 10−8M⊙year
−1 and electron temperature Te = 3.6 × 1010 K at

6M (Note that gravitational radius is defined as rg = 2M in Shcherbakov & Baganoff

(2010)). from the center showing a great agreement with present results. Thus, the radial

extensions of density to large radius is justified. We constrain density in the outer flow

by X-ray observations (Shcherbakov & Baganoff, 2010) and in the inner flow by sub-mm

observations. The resultant density profile

ρ ∝ r−β, β = 0.80− 0.90 (6.38)

is a quite robust estimate. Density power-law index β lies between β = 1.5 for ADAF flow

(Narayan & Yi, 1995) and β = 0.5 for the convection-dominated accretion flow (Narayan

et al., 2000; Quataert & Gruzinov, 2000a). However, the modification of the power-law

index from the steep ADAF profile is likely due to conduction for Sgr A*, not convection.

In the present chapter we combined several sophisticated techniques to arrive at our

conclusions. Let us now examine the viability of the approaches employed. The dynamical

model, despite being based on 3D GRMHD simulations, incorporates averaging and strong

approximations. Despite simulating many Keplerian orbits in the region within 25M ,

the slopes of density ne and temperatures Tp and Te, fixed at the outer flow, break at a

radius of roughly 25M . This suggests one needs to simulate an even larger domain in
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radius and potentially add other physical effects such as conduction (Johnson & Quataert,

2007; Sharma et al., 2008; Shcherbakov & Baganoff, 2010). Simulations with larger

dynamic range will also help to constrain the Faraday rotation, which happens for the

present models partially outside of the simulated domain. The proper simulation of the

polar region of the flow may be important as well. At present we artificially limit the

magnetization and temperature there. If we do not, then the numerical artifacts associated

with excessive numerical dissipation and heating appear, similar to those in Moscibrodzka

et al. (2009). The unanimous decision in favor of a∗ = 0.9 spin for similar types of fitting

over the simulation-based models gives a hope that the simulations of different groups are

sufficiently similar and any simulation and averaging of the sort is representative.

If the non-thermal electrons provide most of energy for sub-mm peak, then this may

potentially invalidate the spin estimates (Shcherbakov & Huang, 2011).

Radiative transfer, in turn, has its own assumptions. Our emissivities in the special

synchrotron approximation are good enough, providing e.g. 2% agreement with exact

emissivities (Leung et al., 2009; Shcherbakov & Huang, 2011) for b = 20 G, θB = 1 rad,

Te = 6.9 · 109 K, and observed frequency ν = 100 GHz. Agreement is better for larger Te.

The non-polarized radiative transfer of total intensity (Moscibrodzka et al., 2009; Dexter

et al., 2010) has an intrinsic error in comparison with polarized radiative transfer with the

same total emissivity εI , however the error is only 1− 5%. We use the averaged dynamical

model to calculate radiation and do not perform the statistical analysis of radiation from

many simulation shots. This is a strong approximation, which cannot be easily justified

and requires future improvement. Polarized radiative transfer appears to be much slower

than unpolarized, and the present computation took 17k CPU-hours on a supercomputer

to explore the full parameter space. Reliable statistics of radiation over many snapshots
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may require up to 1M CPU-hours, and is not viable at present.

There are still unaccounted sources of error. The mass of the BH in the Galactic

Center is known to within 10% (Ghez et al., 2003) and the distance is known to 5%. We

do not perform a detailed analysis here, but it seems that these uncertainties would not

lead to significant changes in our predictions. A simple shift to slightly lower spin should

be able to mimic the effect of smaller BH or a BH at larger distance from us.

Apart from questions of modeling, the improvement of observational data can lead

to further insights on the flow structure and more reliable estimates of BH spin. The

detailed comparison of flux, LP, and CP curves in Figure 6.7 show that the models with

spin a∗ = 0.5 and spin a∗ = 0.9 have discrepancies in these regions not constrained

by observations. In particular, the CP fractions at 145 GHz are different. EVPA data

needs improvement as well. Despite some statistics available at 230 GHz and 349 GHz,

the variability of EVPA is about 20◦, which translates to ±20◦ (3σ) uncertainly of the

mean PA, whereas the modeling uncertainty is only several degrees. More observations

of EVPA at these frequencies will help to find the Faraday rotation measure more

precisely and constraint the PA of BH spin. An alternative is to observe at higher

frequencies ν ≥ 690 GHz, where both the Faraday rotation effect and fluctuations of

the intrinsic emission EVPA are small. Another important quantity is LP at 88 GHz,

whose observations are only reported in 2 papers. Variations in simulated LP(88GHz)

are quite large between the best models (see Figure 6.7). Refinement of the observed

mean log(LP(88GHz)) could potentially help discriminate better between the a∗ = 0.5 and

a∗ = 0.9 spin solutions. A measurement of the emitting region size or the correlated flux is

also promising. Despite the correlated flux at 230 GHz being measured at the SMT-JCMT

3.5Gλ baseline, the statistics of this measurement are needed to capture variations of Fcorr
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over at least a year to be comparable with the statistics of total flux. The correlated flux

observations are currently being accumulated (Fish et al., 2011). The correlated flux at

this baseline is exponentially sensitive to the physical flow size, which can make slightly

brighter states have significantly lower Fcorr. As a caveat, the conclusion on image sizes

may depend on the behavior of matter in the ill-defined polar regions. Our models do not

exhibit significant emission from high latitudes at 230 GHz (see Figure 6.15) or anywhere

above 88 GHz.

The present work offers an improvement over the previous estimates of the Sgr

A* spin, inclination, and accretion flow properties, though there is still significant

room for improvement. Future work would incorporate more statistics from recent

polarized observations in the sub-mm. Future 3D GRMHD simulations would have higher

dynamic range converging at r > 50M and likely have a more pronounced outflow. Adding

Comptonization to radiative transfer would allow one to test the quiescent X-ray luminosity

L ≈ 4 · 1032erg s−1 within 2 − 10 keV (Shcherbakov & Baganoff, 2010). So far we have

focused on the mean state and discarded the information of simultaneity. These data will

be used in future analysis of observations to tighten the error bars. The time variability

properties can be found from the simulations and compared to the observed ones. In

particular, “jet lags” (Yusef-Zadeh et al., 2008; Maitra et al., 2009) and quasi-periodic

oscillations (QPOs) (Genzel et al., 2003; Eckart et al., 2006b; Miyoshi, 2010) should be

investigated using the simulations.
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6.9 Appendix: Radiative Transfer Convergence

We have written a novel code for general relativistic polarized radiative transfer.

As with any new code, we need to conduct a set of convergence tests to ensure it is

working accurately. First, we need to devise metrics for assessing accuracy. In the present

chapter we model fluxes at 7 frequencies between 88 GHz and 857 GHz, LP fractions at

3 frequencies and CP fractions at 2 frequencies and define χ2 as to characterize goodness

of fit. We employ a similar quantity χ2
H/dof to characterize the accuracy of transfer. We

define

χ2
H/dof =

1

9

12∑
i=1

(Qi,1 −Qi,2)
2

σ(Q)2
, (6.39)
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where Qi,1 are simulated fluxes for one set of auxiliary radiative transfer parameters and

Qi,2 are for another set. The errors σ(Q) are the observed errors of the mean, and index

i runs through all fluxes, log LP, and CP fractions. When one of the models fits the

data exactly, then χ2
H/dof coincides with χ

2/dof. Auxiliary radiative transfer parameters

designated by P... include:

1. dimensionless scale Pfact of the size of integration region in the picture plane,

2. distance from the center Pss measured in horizon radii rH , where radiative transfer

starts,

3. number of points Psnxy = N along each dimension in picture plane,

4. extension power-law slope of density profile Prhopo,

5. extension slope of internal energy density profile PUpo,

6. extension slope of magnetic field profile PBpo.

Since fluctuations and differences in χ2/dof between different models reach 1, then values

χ2
H/dof . 0.1 are acceptable, but we in general strive for χ2

H/dof < 0.02. We set constant

Pfact, Pss, Psnxy for all radiative transfer computations, but we cannot check the code

accuracy for all models. We check the convergence a posteriori for the best RMS-field

models at each spin value. We find reasonable values of parameters P... by trial-and-error

method for some well-fitting model and then fix them. The resultant set of auxiliary

parameters is Pfact = 1, Pss = 1.01rH , and Psnxy = 111. Whereas the values of Prhopo and

PUpo are fixed by extensions to large radii and density in the inner flow. The tests and

the values of χ2
H are in Table 6.2. The first column describes the test: which quantity we

change and how. For example, Pfact : 1 → 0.8 means that we tested the convergence of

integration region relative size, the value of Pfact changed from 1 to 0.8. We change only

one parameter at a time. Since the power-law slopes Prhopo and PUpo can vary from model
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to model, we change them such that rhopo is increased by 0.2 and Upo is decreased by

0.1. This represents variation of density by a factor of 7 and variation of temperature by a

factor of 2.5 at the distance rout = 3 · 105M , where extension starts from, yet leading to

minor changes in χ2
H/dof < 0.1 (see Table 6.2). Density and temperature at rout = 3 ·105M

are known better than to within a factor of several (Baganoff et al., 2003; Shcherbakov &

Baganoff, 2010). Thus, the concerns are invalidated that unjustified power-law extensions

of density and temperature to large radii may change substantially the polarized spectrum.

We also estimate the influence of magnetic field extension power-law by steepening it from

(r/M)−1.5 to (r/M)−1.75. The resultant χ2
H/dof . 0.2 are small for such a change, but

may be much larger for shallower slopes. The extensions as shallow as |b| ∝ (r/M)−1 may

provide better fits to Faraday rotation measure and should be carefully explored. Various

extensions of the fluid velocity lead to practically the same polarized intensities.
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Table 6.2: Values of χ2
H/dof for radiative transfer tests over best models.

Test spin
a∗ = 0

spin
a∗ =
0.5

spin
a∗ =
0.7

spin
a∗ =
0.9

spin
a∗ =
0.98

spin
a∗ = 0.9
(lin b)

PN : 75 → 111 0.012 0.0034 0.0097 0.014 0.0046 0.0070

PN : 111 → 161 0.0018 0.0043 0.0017 0.00087 0.0013 0.0012

Pss : 1.003rH →
1.01rH

0.00072 0.0017 0.0018 0.00065 0.00041 0.0010

Pss : 1.01rH → 1.03rH 0.018 0.020 0.018 0.017 0.0073 0.020

Pfact : 0.8 → 1.0 0.027 0.60 0.073 0.050 0.042 0.11

Pfact : 1.0 → 1.2 0.013 0.185 0.081 0.039 0.017 0.087

Prhopo : Q → Q+ =
0.2

0.027 0.064 0.044 0.097 0.018 0.079

PUpo : Q→ Q− = 0.1 0.096 0.074 0.021 0.017 0.0063 0.0099

PBpo : −1.5 → −1.75 0.19 0.12 0.0026 0.012 0.0049 0.028



Chapter 7

Discussion and Future Directions

In this thesis I described a variety of modeling topics related to accretion onto

low-luminosity AGNs and jets. The model with conduction was shown to be reasonable

for connecting the outer feeding region of the flow to the inner plunging region. The

inner accretion flow was described in terms of a model based on 3D GRMHD numerical

simulations. Since the lightcurves of Sgr A* vary a lot in sub-mm, I fitted the mean

flux spectrum and mean dependencies of CP fraction, EVPA, and log of LP fraction on

frequency. These mean quantities were compiled based on a nearly complete history of 15

years of Sgr A* observations reported in 29 papers.

Significant efforts were dedicated to making theories self-consistent and rigorous. I

employed statistical χ2 tests to gauge the quality of fits. For the sub-mm spectrum of

Sgr A* I even ran the Kolmogorov-Smirnov test to show that the statistical properties of

the observations are consistent with a Gaussian probability distribution, thus a χ2 test is

justified. The plasma physics part of my thesis is quite rigorous. Assuming only a thermal

particle distribution I computed precisely Faraday rotation and Faraday conversion
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coefficients for plasma at all temperatures. Chapter 5 on GR polarized radiative transfer

does not have approximations either.

However, the semi-analytical dynamical modeling reported in this work is substantially

oversimplified. The work on radial accretion with MHD turbulence in Chapter 2 postulates

an ad-hoc set of averaged equations, speculating on the dissipation rate of turbulence and

on the interplay between different components of anisotropic magnetic field. This model

does not explain any observations, neither is it believable, since the model is spherically

symmetric. Conduction-mediated accretion in Chapter 3 is a relatively new concept,

whereas the inclusion of feeding by stellar winds is an established process (Lamers &

Cassinelli, 1999). An excellent fit with χ2/dof = 1.4 was found for the surface brightness

profile. Also the model fits the orders of magnitude of sub-mm luminosity and Faraday

rotation measure. A qualitatively new model was thus found to give quantitatively correct

results. Yet, this model of accretion with conduction incorporates many unknowns. First,

the model is again spherically symmetric, so it ignores both rotation the possibility of

producing strong winds above the equatorial plane. Second, the value of conductivity κ

is not known, but an order of magnitude estimate is used. It is not known at present, if

conductivity is actually proportional to electron velocity and radius κ ∼ ver or what the

precise proportionality coefficient is, if proportionality holds. The presence of magnetic

field makes the estimate even more uncertain.

The most complicated model is presented in Chapter 6. It is based on averaged 3D

GRMHD simulations and contains a number of approximations. Some of them can be

easily lifted, but some must be allowed to make this pioneering work at all possible. There

are two easy-to-lift approximations, already lifted by other groups: evolution of intensities

along rays should be computed along with the dynamical evolution; means of fluxes
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from radiative transfer over many snapshots should be compared to observations, not a

single set of fluxes computed over the averaged model. The approximations on dynamics

are more severe. The simulations presented in Chapter 6 are not necessarily converged

as described by Hawley et al. (2011). Various quantities must converge, e.g. accretion

rate with time, accretion rate as a function of radius, accretion rate and magnetic field

strength with resolution or with changing initial conditions. Initially, only the accretion

rate convergence was considered (Penna et al., 2010), but later convergence of magnetic

flux and turbulence dissipation rate were also included as a requirement. No present-day

accretion disk simulation can achieve convergence with turbulence dissipation, much more

work in this direction is needed. The distribution of electrons and their temperature, were

they thermal, is also largely uncertain.

The desire to employ precise physics is rarely rewarded in the field of Astronomy, which

is driven more by puzzles and qualitatively new explanations for observed phenomena.

Creating quantitatively correct theories is a minor driver of the field. On this basis I would

gauge the potential future directions of my research. Radiative transfer looks promising

in this respect. Polarized radiative transfer presented here was applied so far only to

LLAGNs, whereas jets is an exciting other area of its application. The polarized signature

of jets was only researched qualitatively (Homan et al., 2009), and the agreement of a

model with data was not achieved.

Modeling of accretion with conduction holds even more promise for qualitative

improvements. Emergence of outflows driven by conductive heat flux from the accretion

flow was not conclusively demonstrated. Thus, a two-dimensional analytic model or

numerical simulations of 2D inflow-outflow pattern may appear to be a cornerstone

of accretion in a typical dormant AGN. Such a model will also be tested with X-ray
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observations of Sgr A*. As 1D model was computed, which fits 1D surface brightness

profile, there is another dimension of data to validate a 2D model — frequency. A

Chandra HETG proposal to obtain the precise spectrum of Sgr A* has been submitted,

and substantial spectral data are already available from previous observations. Yet, the

prescription for conductivity κ should be wisely chosen for simulations with electron

conduction. It might not be viable in the near future to precisely determine collisionless

conductivity of magnetized plasma. But this precise treatment may not be needed as

variations of conductivity prescription might not lead to even quantitative improvement of

the fit.

Numerical simulations will progress in the future as more powerful computers appear

according to Moore’s law. Rigorous convergence tests are already developed for MHD

and will be developed for simulations of collisionless plasmas. Simulations with higher

resolution may lead to better agreement to observations. A not-so-great quality of fit

χ2/dof ≈ 4 should be improved upon. Yet, if proper averaging of the simulated lightcurves

results in a better quality of fit with χ2/dof ≈ 1, then the utility is small in improving

the resolution of dynamical simulations. However, lots of various observational data have

been accumulated for Sgr A*. It might not be possible for a long time to fit all these

data within a single model. Such additional data are the dependence of EVPA angle on

frequency and the inferred Faraday rotation measure, X-ray contribution from the central

source produced by SSC mechanism, variability properties and correlations of polarized

fluxes. Ever improving physical models will continue being involved to explain this body of

observations. When more sophisticated theories are tested on Sgr A*, they will be applied

to other low-luminosity AGNs and jets, where less observational data are available. It will

be possible in the future to reliably extract the spins and illuminate the flow properties of
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M87*, M81*, M31*, BH in 3C 279 and other supermassive black holes.
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