Galactic nuclel: inside from the outside
or

Dynamics of magnetized spherical accretion flows

Roman Shcherbakov

Center for Astrophysics, Harvard University
Thanks to Ramesh Narayan

HuangShan, China
1-7 July 2007



How accretion without cooling works

Bondi (1952) (ideal, radial, NO magnetic field) => Bondi accretion rate.
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What about magnetic field?



Realistic radial accretion
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Magnetically arrested flow?



Basic Scheme
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What do we need to describe the flow?

8 functions of radius
8 equations needed

Y =reqgular (V,,) + isotropic
turbulent (u) velocities

pP —density

T - temperature

B | — perpendicular magnetic field

B, — radial magnetic field

L — perpendicular length scale

O — magnetic helicity

For random quantity
Its characteristic value is considered,
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How to include dissipation?

Magnetic field inhibits accretion (Schwartzman, 1971),
ot |NOW much Is the effect?

No dissipation :> No matter inflow

No theory :> Use (_)ther_(simp!e)
available numerical simulations

The better we correspond to the experiment,
the more reliable the result is.

Dissipation Dissipation _
of hydrodynamic turbulence of MHD turbulence Dynamo action
Sreenivasan, 1995 Biskamp, 2003 Shchekochihin,2004

+ phenomenological magnetic helicity conservation



Flux tubes

o — winding angle

Self-part of
magnetic helicity

H=+N-@’
Biskamp, 2000

Energy decay
£ =—7 jfzd‘?x
dt »

dl\ﬁgnetic helicity decay
— == j-Bd’x
o [

In current sheets j — o0

dH 7, dW __dW
H ”mrb W W

Biskamp, 2003



Interactions of flux tubes
magnetic helicity effect




Equations
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Evolution of turbulence
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Why averaged MHD?

Numerical simulations are resource-intensive

Need Re>500 Instead in my approach

But who gives a supercomputer...
to a grad student?




Flux tube accretion,
perpendicular diffusion




Results. Accretion rate
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Results. Velocities

force-free boundary
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Accretion rate vs. winding angle
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Convection, no diffusion.

Effectiveness is almost independent on scale



Convection, diffusion Is on.

Only large scale perturbations survive



Case with angular momentum

Fg
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Conclusions

1 Averaged MHD approach (approximately) works
ISotropic case corresponds to simulations

1 Accretion rate is much lower, than without magnetic field
2-5 times without angular momentum |10 * M_ year '| SQr A*
another 4 times lower with high magnetic helicity
(preliminary) about (107 M_year™'| for R, =(1+5)-10° R,

circ

1 Subequipartition magnetic field

1 Convection and diffusion should be accounted for together
only large scale approach works

More results soon
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