Inflow-Outflow Solution with Stellar Winds and Conduction near Sgr A*

Roman Shcherbakov (Harvard) Fred Baganoff (MIT) Thanks Ramesh Narayan, Li Ji Galactic Center Workshop 2009

General idea

Dynamical model: Feeding Mechanism

FIG. 1.—Steady state radial velocity and gas temperature as a function of

1.5

Dynamical model: Improved Feeding

Table of 31 most important wind emitters

Ν	Ident	$\Delta RA, "$	ADecl,''	Δz,''	v _{RA} , km/s	$v_{\text{Decl}}, km/s$	v_z , km/s	eccentr	$Log[\dot{M}, M_S/year]$	vwind, km/s
1.	S2,SO2	0.04	0.12		9.	1830.	-1060.	0.876	-7.2	1000
19.	IRS16NW	0.029	1.221		238.392	32.9208	-44.	0.898	-4.95	600.
20.	IRS16C	1.121	0.497		-330.722	280.773	125.	0.5	-4.65	650.
23.	IRS16SW	1.051	-0.966	-1.46	257.312	84.0048	320.	0.41	-4.95	600
31.	IRS29N	-1.595	1.423		199.038	-166.874	-190.		-4.95	1000
32.	MPE+1.6-6.8(16SE1)	1.846	-1.141	-1.52	182.767	112.763	366.	0.26	-4.95	1000
35.	IRS29NE	-0.992	2.073	2.99	-305.369	-10.9736	-100.	0.14	-4.95	1000
39.	IRS16NE	2.868	1.053		117.682	-413.97	-10.	0.	-4.95	1000
40.	IRS16SE2	2.938	-1.183	-1.2	54.4896	130.17	327.	0.206	-4.15	2500.
41.	IRS33E	0.665	-3.126	-3.57	203.579	1.5136	170.	0.63	-4.8	450.
48.	IRS13E4	-3.19	-1.42		-316	76	56.	0.809	-4.3	2200.
51.	IRS13E2	-3.14	-1.74		-303.	68.	40.	0.749	-4.35	750.
56.	IRS34W	-4.05	1.59	1.55	-79.	-166.	-290.	0.217	-4.88	650.
59.	[PMM2001] B9	2.94	3.46		250.	32.	-150.	0.794	-4.9	1000.
60.		-4.36	-1.65		-210.	127.	330.	1.046	-4.95	1000
61.	IRS34NW	-3.73	2.85	3.08	-225.	-112.	-150.	Ο.	-5.3	750.
65.	IRS9W	2.85	-5.62		167.	135.	140.	0.665	-4.35	1100.
66.	irs7sw	-3.95	4.93		-5.	-108.	-350.	1.261	-4.7	900.
68.	IRS7W	-2.45	5.99		185.	36.	-305.	0.155	-5.	1000.
70.	IRS7E2 (ESE)	4.41	4.97		203.	-7.	-80.	0.714	-4.8	900.
71.		1.59	6.49		-148.	189.	-300.	0.73	-4.95	1000
72.		6.71	-0.5		65.	100.	86.	0.555	-4.95	1000
74.	AFNW	-7.63	-3.57		-67.	-92.	70.	0.932	-4.5	800.
76.	IRS9SW	4.28	-8.03		108.	8.	180.	0.521	-4.95	1000
78.	[PMM2001] B1	9.46	0.31		-161.	-142.	-230.	0.781	-4.95	1000
79.	AF	-6.54	-6.91		68.	50.	160.	0.991	-4.75	700.
80.	IRS9SE	5.65	-8.17		-2.	-131.	130.	0.766	-4.65	650
81.	AFNWNW	-9.63	-2.58		87.	-9.	30.	0.873	-3.95	1800.
82.	Blum	-8.63	-5.33		-53.	249.	-70.	0.646	-5.3	750
83.	IRS15SW	-1.58	10.02		-55.	-32.	-180.	0.863	-4.8	900.
88.	IRS15NE	1.38	11.68		-8.	103.	-65.	0.877	-4.7	800.

Orbital data – Paumard et al. (2006)
Numbers are updated from Lu, Ghez et al.(2009)
S2 star – Martins, Gillessen (2008)

≻∆z and Eccentricity – from identification with stellar disks or from minimum eccentr (if not disk)
≻Wind speeds/ejection rate – Martins et al.(2007)

Guesses on wind speeds/ejection rates from similarity – Cuadra et al. (2007)

Dynamical model: Improved Feeding

Dynamical model: shallow density profile

Adiabatic model without conduction

with conductivity $\kappa \sim 0.1 \sqrt{k_B T_e / m_e \cdot n r}$

Flow is marginally collisional at 5"

Dynamical model: entropy production

Also called superadiabatic heating: more effective conversion of gravitational energy into thermal

 f_i and f_e can be calculated "self-consistently" in turbulent flow Radial magnetized turbulent flow ightarrow Shcherbakov 2008, ApJ ightarrow $ho \propto r^{-1.2}$

Bremsstrahlung: gaunt factor

Absorption

At $N_{H}=10^{23}$ cm⁻², peak energy reaching the detector is ≥ 4 keV

Results: only extended emission

Conduction, f_i=0.15, f_e=0.05, relativistic heat capacity of e⁻

Assumption: emission stops at 7" (line cooling Sutherland, Dopita 1993)

Results: point source & residual

Consistent with Moscibrodzka, et al. 2009 $\nu L_{\nu} = 5^{\circ}10^{32} \text{erg/s}$ at 4keV SSC point source

Results: possible fit

Comparison to previous estimates

About the same densities in this model despite bright point sources/extended emission subtracted Temperature is N_H dependent, around 2.2keV for N_H =10²³cm⁻²

Actually spherically symmetric?

Counts from 4 sectors 90° each

Plot of file central_pc_rprof_0125as_q1-4.fits

Conclusions

 Data extracted from extensive Chandra observations (non-flaring)
 Model constructed with electron conduction and superadiabatic heating

✓ Shallow density profile => fit to extended part of emission
 ✓ Point source of (3±1)·10³²erg/s must be present
 ✓ χ² search in the parameter space continues

Future work

✓ Use spectral data

- ✓ Include angular momentum
- ✓ Fit optically thick sub-mm luminosity (86GHz)

Dynamical model: relativistic effects

Proper heat capacity of relativistic electrons

Radius (arcsec)

Why 2D GRMHD simulations are bad?

2D MHD Igumenshchev 2008