Unified accretion model for Sgr A*

Roman Shcherbakov (Harvard), <u>rshcherb@cfa.harvard.edu</u>; <u>http://www.cfa.harvard.edu/~rshcherb/</u> Frederick K. Baganoff (MIT), Robert Penna (Harvard) Thanks Ramesh Narayan, Charles Gammie Washington, DC, 4 Jan 2010

 $\log[v(Hz)]$

Yuan et al. 2004

Idea of the model

Goal:

- 1. explain X-Ray surface brightness within 5"
- 2. fit sub-mm SED + linear polarization fractions
- 3. reproduce image size at 230GHz

I. Radial model at large radius

Shcherbakov, Baganoff 2009, ApJL, submitted

Radial model: Feeding Mechanism

Radial model: black hole feedback

Adiabatic model (no feedback)

electron conduction dominates convection etc.
damped by a factor 3 to 5 in tangled magnetic field

Narayan, Medvedev 2001

heat flux Q_e proportional to T_e gradient

Results for X-Rays

accretion rate = $6 \cdot 10^8 M_{Sun}/yr - <1\%$ of the naïve model estimate

II. 3D GRMHD simulations close to the BH

Shcherbakov, Penna 2010, in preparation

GRMHD simulations

Initial setup and features
❑ start from torus w/ inner edge at 20M
❑ spins 0; 0.7; 0.9; 0.98
❑ no cooling

VectorPlot of and DensityPlot of <B²>

Azimuthal and t average in "steady" accretion for each of 4 spins

Fitting sub-mm data

Conclusions

- I. High a>0.7 bad: lower density => weak beam depolarization and high LP at lower v
- II. CP<0.5%, less radio need more mildly relativistic e⁻?

Polarimetric Imaging

Distances measured in M

White to darkest red - factor of 8

Conclusions

Emphasis on self-consistency

Main physical effects captured within arcsec model
 Realistic 3D GRMHD simulations of rg scales matched to arcsec model

✓ Fit to extended X-Ray emission
 ✓ X-Ray point source L≈4·10³²erg/s
 ✓ Reasonable fits to sub-mm total intensity and LP fraction
 ✓ Fit to image size at 230GHz

Future work

✓ Include angular momentum into radial model
 ✓ Use X-Ray spectral data for further tests (find N_H)

Employ correct cyclo-synchrotron (original calculations done)

Radial arcsec scale model: at a glance

Entropy production fractions f_e, f_p of grav. energy -> thermal energy

Direct heating of electrons

 $f_e / f_p = \frac{1}{3} \sqrt{T_e / T_p}$ Sharma et al. 2007

Line cooling is neglected Sutherland, Dopita 1993 Relativistic heat capacity of e⁻: leads to lower T_e

Fixed large electron conduction

N_H=10²³cm⁻²; solar abundance Najarro et al. 2004

Corrected bremsstrahlung

Gould, 1980 + errata

20% larger emissivity at T~2keV and hv ~ 4keV

Absorption, PSF blurring, effective area

Morrison, McCammon, 1983

PSF is directly extracted from the nearby point source

Fitting surface brightness profile for:

- 1. Accretion rate M
- 2. Luminosity L of SSC point source
- 3. T_e at stagnation point
- 4. Heating fraction f_p

GRMHD rg scale model: at a glance

- 1. Relativistic heat capacity of e-
- Direct heating mechanism Tp/Te≠const

Sharma et al. 2007

Model is extended to larger radii Smoothly extend B profiles beyond 25M Match ne, Te to radial arcsec model at 25M

GR polarized radiative transfer

Formalism of GR polarized rad. transfer

Gammie, Leung, Shcherbakov, in prep

full covariant formalism, effects of moving fluid

Fitting sub-mm intensity, LP fraction vs v for

- 1. Accretion rate M (can be fixed by outer flow)
- 2. Spin of black hole a=J/M
- 3. Inclination θ of BH spin

Imaging – fitting image size to VLBI data

Exact Faraday rotation/conversion coeff

Shcherbakov, 2008

Faraday conversion shuts off at high temperatures!

Actually spherically symmetric?

Counts from

Polarimetric Imaging

Distances measured in M

White to darkest red - factor of 8

Radial model: entropy production

Also called superadiabatic heating: more effective conversion of gravitational energy into thermal

$$-v_r n T_e \frac{ds_e}{dr} = q_e^+$$

$$q_{e,i}^+ = f_{e,i} \frac{GM\dot{M}}{4\pi r^4}$$

Johnson, Quataert 2007

Dynamical model: Improved Feeding

Table of 31 most important wind emitters

Ν	Ident	$\Delta RA, "$	ADecl,''	Δz,''	v _{RA} , km/s	$v_{\text{Decl}}, km/s$	v_z , km/s	eccentr	$Log[\dot{M}, M_S/year]$	vwind, km/s
1.	S2,SO2	0.04	0.12		9.	1830.	-1060.	0.876	-7.2	1000
19.	IRS16NW	0.029	1.221		238.392	32.9208	-44.	0.898	-4.95	600.
20.	IRS16C	1.121	0.497		-330.722	280.773	125.	0.5	-4.65	650.
23.	IRS16SW	1.051	-0.966	-1.46	257.312	84.0048	320.	0.41	-4.95	600
31.	IRS29N	-1.595	1.423		199.038	-166.874	-190.		-4.95	1000
32.	MPE+1.6-6.8(16SE1)	1.846	-1.141	-1.52	182.767	112.763	366.	0.26	-4.95	1000
35.	IRS29NE	-0.992	2.073	2.99	-305.369	-10.9736	-100.	0.14	-4.95	1000
39.	IRS16NE	2.868	1.053		117.682	-413.97	-10.	0.	-4.95	1000
40.	IRS16SE2	2.938	-1.183	-1.2	54.4896	130.17	327.	0.206	-4.15	2500.
41.	IRS33E	0.665	-3.126	-3.57	203.579	1.5136	170.	0.63	-4.8	450.
48.	IRS13E4	-3.19	-1.42		-316	76	56.	0.809	-4.3	2200.
51.	IRS13E2	-3.14	-1.74		-303.	68.	40.	0.749	-4.35	750.
56.	IRS34W	-4.05	1.59	1.55	-79.	-166.	-290.	0.217	-4.88	650.
59.	[PMM2001] B9	2.94	3.46		250.	32.	-150.	0.794	-4.9	1000.
60.		-4.36	-1.65		-210.	127.	330.	1.046	-4.95	1000
61.	IRS34NW	-3.73	2.85	3.08	-225.	-112.	-150.	Ο.	-5.3	750.
65.	IRS9W	2.85	-5.62		167.	135.	140.	0.665	-4.35	1100.
66.	irs7sw	-3.95	4.93		-5.	-108.	-350.	1.261	-4.7	900.
68.	IRS7W	-2.45	5.99		185.	36.	-305.	0.155	-5.	1000.
70.	IRS7E2 (ESE)	4.41	4.97		203.	-7.	-80.	0.714	-4.8	900.
71.		1.59	6.49		-148.	189.	-300.	0.73	-4.95	1000
72.		6.71	-0.5		65.	100.	86.	0.555	-4.95	1000
74.	AFNW	-7.63	-3.57		-67.	-92.	70.	0.932	-4.5	800.
76.	IRS9SW	4.28	-8.03		108.	8.	180.	0.521	-4.95	1000
78.	[PMM2001] B1	9.46	0.31		-161.	-142.	-230.	0.781	-4.95	1000
79.	AF	-6.54	-6.91		68.	50.	160.	0.991	-4.75	700.
80.	IRS9SE	5.65	-8.17		-2.	-131.	130.	0.766	-4.65	650
81.	AFNWNW	-9.63	-2.58		87.	-9.	30.	0.873	-3.95	1800.
82.	Blum	-8.63	-5.33		-53.	249.	-70.	0.646	-5.3	750
83.	IRS15SW	-1.58	10.02		-55.	-32.	-180.	0.863	-4.8	900.
88.	IRS15NE	1.38	11.68		-8.	103.	-65.	0.877	-4.7	800.

Orbital data – Paumard et al. (2006)
Numbers are updated from Lu, Ghez et al.(2009)
S2 star – Martins, Gillessen (2008)

≻∆z and Eccentricity – from identification with stellar disks or from minimum eccentr (if not disk)
≻Wind speeds/ejection rate – Martins et al.(2007)

Guesses on wind speeds/ejection rates from similarity – Cuadra et al. (2007)

Bremsstrahlung: gaunt factor

Absorption

At $N_{H}=10^{23}$ cm⁻², peak energy reaching the detector is ≥ 4 keV

Dynamical model: relativistic effects

Proper heat capacity of relativistic electrons

Radius (arcsec)

Why 2D GRMHD simulations are bad?

2D MHD Igumenshchev 2008