Self-consistent modeling of Sgr A* quiescent emission

Roman Shcherbakov (Harvard), <u>rshcherb@cfa.harvard.edu</u>; <u>http://www.cfa.harvard.edu/~rshcherb/</u> Frederick K. Baganoff (MIT), Robert Penna (Harvard) Thanks Ramesh Narayan, Charles Gammie Prague, 17 Feb 2010

Multitude of observational data inefficient accretion onto supermassive black hole sub-mm + radio IR X-Rays VLBI, SMA; polarization data 1Ms of Chandra obs. spatially resolved X-Rays & sub-mm quiescent=median of all observations (incl. flares) 37 extended free-free emission Compton-scattered (SSC) 36

Idea of the model

Goal:

- 1. explain X-Ray surface brightness within 5"
- 2. fit sub-mm SED + linear/circular polarization fractions, RM

I. Radial model at large radius

Shcherbakov, Baganoff 2009, ApJL, submitted

Radial model: Feeding Mechanism

Results for X-Rays (model w/ conduction)

accretion rate = $6 \cdot 10^8 M_{Sun}/yr$ – <1% of the naïve model estimate gives density normalization for GRMHD simulation

II. 3D GRMHD simulations close to the BH

Shcherbakov, Penna 2010, in preparation

GRMHD simulations

Initial setup and features

- □ start from torus w/ inner edge at 20M
- □ spins 0; 0.7; 0.9; 0.98
- □ no cooling
- □ evolve for 10⁴M

VectorPlot of and DensityPlot of <B²>

Azimuthal and t average in "quasi-steady" accretion for each of 4 spins

Matching T_e and n_eto large scales

Splitting of internal energy U into Tp and Te

- 1. Relativistic heat capacity of e-
- 2. Direct heating mechanism
 => Tp/Te≠const

$$f_e / f_p = \frac{1}{3} \sqrt{T_e / T_p}$$
 Sharma e

harma et al. 2007

$$n_e = 4.105 \text{ cm}^{-3} \text{ at } 24 \text{ M}$$

– at outer boundary for GRMHD

Emissivities/Faraday rotation + conversion

Observed circular polarization (V): >1% at 230GHz

sample plot

V emissivity (j_V) absent in synchrotron approx.

0.0

0.2

0.4

0.6

0.8

1.0

 $\log(\omega)$

exact cyclo-synchrotron emissivities; so far – Melrose, 1971 approx for j_V Faraday conversion: LP to V Known only in asympt. regime

Computed for relevant T_e and ω/Ω_c Shcherbakov, 2008, ApJfor thermal plasma

Conversion rate large for intermediate $T_e \sim 5m_e$ very different from previous calculations!

original code is developed

for arbitrary particle distributions

Fitting sub-mm data w/ GR polarized ray tracing

obs: Bower et al. 2002, Yuan, 2004 Macquart et al. 2006; Marrone et al. 2007, Yusef-Zadeh et al. 2007

Conclusions

I. High a>0.7, θ >0.6 bad: lower density => weak beam depolarization and high LP at lower v II. CP<1%, less radio – need more mildly relativistic e⁻?

Polarimetric Imaging

Distances measured in M

White to darkest red - factor of 8

Conclusions

Emphasis on self-consistency

Main physical effects captured within arcsec model
 Realistic 3D GRMHD simulations of rg scales matched to arcsec model

✓ Fit to extended X-Ray emission

- ✓ X-Ray point source $L \approx 4.10^3 \text{ erg/s}$
- ✓ Fits to sub-mm total intensity
- ✓ Fits LP fraction, CP fraction(?), rotation measure

Future work

✓ Use X-Ray spectrum & include ang. momentum into large scale model

- Employ correct cyclo-synchrotron (original calculations done)
- ✓ Do proper averaging, analyze variability
- ✓ Etc... (seen flare in a simulation!)